K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

a) \(\Leftrightarrow A=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow A=\dfrac{x+2\sqrt{x}-3-x+2\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow A=\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{4}{x-1}\)

b) \(A=7\) \(\Leftrightarrow\dfrac{4}{x-1}=7\)

\(\Leftrightarrow7x-7=4\) \(\Leftrightarrow7x=11\Leftrightarrow x=\dfrac{11}{7}\left(TM\right)\)

11 tháng 12 2021

\(a,A=\dfrac{x+2\sqrt{x}-3-x+2\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{4}{x-1}\\ b,A=7\Leftrightarrow x-1=\dfrac{4}{7}\Leftrightarrow x=\dfrac{11}{7}\left(tm\right)\)

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi 

Câu 6: Để hàm số y=(1-m)x+3 nghịch biến trên R thì 1-m<0

=>m>1

=>Chọn B

Câu 7: D

Câu 10: (D)//(D')

=>\(\left\{{}\begin{matrix}3m+1=2\left(m+1\right)\\-2\ne-2\left(loại\right)\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

=>Chọn D

Câu 11: \(x^2+2x+2=\left(x+1\right)^2+1>=1>0\forall x\)

=>\(\sqrt{x^2+2x+2}\) luôn xác định với mọi số thực x

=>Chọn A

Câu 12: Để hai đường thẳng y=x+3m+2 và y=3x+2m+3 cắt nhau tại một điểm trên trục tung thì \(\left\{{}\begin{matrix}1\ne3\left(đúng\right)\\3m+2=2m+3\end{matrix}\right.\)

=>3m+2=2m+3

=>m=1

=>Chọn C

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

NV
2 tháng 11 2021

6.B

Hàm nghịch biến trên R khi:

\(1-m< 0\Rightarrow m>1\)

5.B

Đồ thị đi qua A nên:

\(-1=2a-2\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)

NV
22 tháng 7 2021

1.

Dễ dàng tìm được tọa độ 2 giao điểm, do vai trò của A, B như nhau, giả sử \(A\left(2;4\right)\) và \(B\left(-1;1\right)\)

Gọi C và D lần lượt là 2 điểm trên trục Ox có cùng hoành độ với A và B, hay \(C\left(2;0\right)\) và \(D\left(-1;0\right)\)

Khi đó ta có ABDC là hình thang vuông tại D và C, các tam giác OBD vuông tại D và tam giác OAC vuông tại C

Độ dài các cạnh: \(BD=\left|y_B\right|=1\) ; \(AC=\left|y_A\right|=4\)

\(OD=\left|x_D\right|=1\) ; \(OC=\left|x_C\right|=2\) ; \(CD=\left|x_C-x_D\right|=3\)

Ta có:

\(S_{OAB}=S_{ABDC}-\left(S_{OBD}+S_{OAC}\right)\)

\(=\dfrac{1}{2}CD.\left(AC+BD\right)-\left(\dfrac{1}{2}BD.OD+\dfrac{1}{2}AC.OC\right)\)

\(=\dfrac{1}{2}.3.\left(4+1\right)-\left(\dfrac{1}{2}.1.1+\dfrac{1}{2}.4.2\right)=3\)

undefined

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>\(\widehat{ACB}=30^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

b: \(AC=6\sqrt{3}\left(cm\right)\)

\(C=AB+AC+BC=6+12+6\sqrt{3}=18+6\sqrt{3}\left(cm\right)\)

\(S=\dfrac{6\sqrt{3}\cdot6}{2}=18\sqrt{3}\left(cm^2\right)\)

c: Xét (O) có

MA là tiếp tuyến

MC là tiếp tuyến

Do đó: MA=MC

hay M nằm trên đường trung trực của AC(1)

Ta có: OA=OC

nên O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OM là đường trung trực của AC

hay OM\(\perp\)AC

7 tháng 3 2022

\(\left\{{}\begin{matrix}2x+y=1\\x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x+y=-1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=18\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=9\\x-y=-6\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}2x=3\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{15}{2}\end{matrix}\right.\)\(\left\{{}\begin{matrix}2x+3y=6\\x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=12\\3x-6y=9\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}7x=21\\3x-6y=9\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)

Lỗi latex kìa .-.

undefined

NV
3 tháng 5 2021

Phương trình (D) có dạng:

\(y=k\left(x-1\right)-2\Leftrightarrow y=kx-k-2\)

Phương trình hoành độ giao điểm (P) và (D):

\(-\dfrac{x^2}{4}=kx-k-2\Leftrightarrow x^2+4kx-4\left(k+2\right)=0\) (1)

\(\Delta'=4k^2+4\left(k+2\right)=\left(2k+1\right)^2+7>0\) ; \(\forall k\)

\(\Rightarrow\) (1) luôn có 2 nghiệm pb hay (D) luôn cắt (P) tại 2 điểm pb A và B

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-4k\\x_Ax_B=-4\left(k+2\right)\end{matrix}\right.\)

Đặt \(A=x_A^2x_B+x_Ax_B^2=x_Ax_B\left(x_A+x_B\right)\)

\(A=-4\left(k+2\right).\left(-4k\right)=16\left(k^2+2k\right)=16\left(k+1\right)^2-16\ge-16\)

\(\Rightarrow A_{min}=-16\) khi \(k+1=0\Leftrightarrow k=-1\)