Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)
\(=6+\sqrt{15}-2\sqrt{15}\)
\(=6-\sqrt{15}\)
b) Ta có: \(\left(5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{10}+10-5\sqrt{10}\)
=10
c) Ta có: \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\)
\(=14-2\sqrt{1}-7+2\sqrt{21}\)
7
Bài 2:
Xét ΔABC vuông tại C có
\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
Bài 4:
b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK
nên \(BD\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)
\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)
=9-8m-4=-8m+5
Để phương trình có nghiệm kép thì -8m+5=0
hay m=5/8
Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)
hay x=3/2
Bài 1:
1: ĐKXĐ: \(x\le\dfrac{2}{3}\)
2: ĐKXĐ: \(x>-\dfrac{3}{2}\)
3: ĐKXĐ: \(x\ne0\)
4: ĐKXĐ: \(x\in R\)
5: ĐKXĐ: \(x< 1\)
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)
b.
$x=7-4\sqrt{3}=(2-\sqrt{3})^2\Rightarrow \sqrt{x}=2-\sqrt{3}$
Khi đó:
$P=\frac{6-4\sqrt{3}}{2-\sqrt{3}}=-2\sqrt{3}$
c.
$P=\frac{x-1}{\sqrt{x}}=\frac{3}{2}$
$\Rightarrow 2(x-1)=3\sqrt{x}$
$\Leftrightarrow 2x-3\sqrt{x}-2=0$
$\Leftrightarrow (\sqrt{x}-2)(2\sqrt{x}+1)=0$
$\Rightarrow x=4$ (tm)
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)
b.
$x=7-4\sqrt{3}=(2-\sqrt{3})^2\Rightarrow \sqrt{x}=2-\sqrt{3}$
Khi đó:
$P=\frac{6-4\sqrt{3}}{2-\sqrt{3}}=-2\sqrt{3}$
c.
$P=\frac{x-1}{\sqrt{x}}=\frac{3}{2}$
$\Rightarrow 2(x-1)=3\sqrt{x}$
$\Leftrightarrow 2x-3\sqrt{x}-2=0$
$\Leftrightarrow (\sqrt{x}-2)(2\sqrt{x}+1)=0$
$\Rightarrow x=4$ (tm)
58:
Xét ΔAHB vuông tại H có
sin B=AH/AB
=>AH/12=sin 40
=>\(AH=12\cdot sin40\simeq7,71\left(cm\right)\)
Xét ΔAHC vuông tại H có
tan C=AH/HC
=>\(HC=\dfrac{AH}{tanC}=\dfrac{7.71}{tan30}\simeq13,35\left(cm\right)\)
59:
góc BAC=180-34-40=180-74=106 độ
Xét ΔABC có
BC/sin A=AC/sin B=AB/sinC
=>15/sin106=AC/sin34=AB/sin40
=>\(AC\simeq8,73\left(cm\right);AB\simeq10,03\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot8.73\cdot10.03\cdot sin106\)
=>\(S_{ABC}\simeq42,08\left(cm\right)\)
=>\(\dfrac{1}{2}\cdot AH\cdot BC=42.08\)
=>\(AH\simeq42.08:7,5\simeq5,61\left(cm\right)\)