\(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

a) \(\sqrt{4\left(1-x\right)^2}-12=0\)

\(\sqrt{4\left(1-x\right)^2}=0+12\)

\(\sqrt{4\left(1-x\right)^2}=12\)

\(\left[\sqrt{4\left(1-x\right)^2}\right]^2=12^2\)

\(4-8x+4x^2=144\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)

b) \(\sqrt{4x^2-12x+9}=5\)

\(\left(\sqrt{4x^2-12x+9}\right)^2=5^2\)

\(4x^2-12x+9=25\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

15 tháng 8 2020

BÀI 1:

a)

\(A=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}\)

=>    \(A=\sqrt{3}+1\)

b)

\(B=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)

=>    \(B=\sqrt{5}-\frac{\sqrt{5}}{2}\)

=>    \(B=\frac{\sqrt{5}}{2}\)

Bài 1 )

a)\(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{2}\)

b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\left(\sqrt{3}+1\right)-\left|1-\sqrt{3}\right|=\left(\sqrt{3}+1\right)-\sqrt{3}+1=2\)

Bài 2)

a)\(\sqrt{36x^2-12x+1}=5\)

\(\Leftrightarrow36x^2-12x+1=25\)

\(\Leftrightarrow36x^2-12x+1=25\)

\(\Leftrightarrow\left(6x\right)^2-2.6x+1=25\)

\(\Leftrightarrow\left(6x-1\right)^2=25\)

\(\Rightarrow6x-1=5\)

\(\Leftrightarrow6x=6\)

\(\Rightarrow x=1\)

b)\(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)

\(\Leftrightarrow\sqrt{x-5}-2\sqrt{4.\left(x-5\right)}-\frac{1}{3}\sqrt{9.\left(x-5\right)}=12\)

\(\Leftrightarrow\sqrt{x-5}-4\sqrt{\left(x-5\right)}-\sqrt{\left(x-5\right)}=12\)

\(\Leftrightarrow-4\sqrt{\left(x-5\right)}=12\)

\(\Rightarrow\)ko tồn tại giá trị nào của x trong biểu thức này

P/s tham khảo nha

25 tháng 8 2018

1a) \(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}\)

=\(3\sqrt{\frac{3}{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)

=\(3\frac{\sqrt{3}}{\sqrt{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\)

=\(3\frac{\sqrt{3}}{3}-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)

=\(\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)\)

=\(\sqrt{3}-\sqrt{3}+\sqrt{2}\)=\(\sqrt{2}\)

b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

=\(|\sqrt{3}+1|-|1-\sqrt{3}|\)

=\(\sqrt{3}+1-\left(-\left(1-\sqrt{3}\right)\right)\)

=\(\sqrt{3}+1+1-\sqrt{3}\)

=\(1+1\)=\(2\)

2) a) \(\sqrt{36x^2-12x+1}=5\)

<=>\(\sqrt{\left(6x\right)^2-2.6x.1+1^2}=5\)

<=>\(\sqrt{\left(6x-1\right)^2}=5\)

<=>\(|6x-1|=5\)

Nếu \(6x-1>=0\)=> \(6x>=1\)=>\(x>=\frac{1}{6}\)

Nên \(|6x-1|=6x-1\)

Ta có \(|6x-1|=5\)

<=> \(6x-1=5\)

<=> \(6x=6\)

<=> \(x=1\)(thỏa)

Nếu \(6x-1< 0\)=> \(6x< 1\)=>\(x< \frac{1}{6}\)

Nên \(|6x-1|=-\left(6x-1\right)=1-6x\)

Ta có \(|6x-1|=5\)

<=> \(1-6x=5\)

<=> \(-6x=4\)

<=> \(x=\frac{4}{-6}=\frac{-2}{3}\)(thỏa)

Vậy \(x=1\)và \(x=\frac{-2}{3}\)

b) \(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)

<=>\(\sqrt{x-5}-2\sqrt{4\left(x-5\right)}-\frac{1}{3}\sqrt{9\left(x-5\right)}=12\)

<=>\(\sqrt{x-5}-2.2\sqrt{x-5}-\frac{1}{3}.3\sqrt{x-5}=12\)

<=>\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\)

<=>\(-4\sqrt{x-5}=12\)

<=> \(\sqrt{x-5}=-3\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(-3\right)^2\)

<=>\(x-5=9\)

<=>\(x=14\)

Vậy x=14

Kết bạn với mình nhá

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

17 tháng 7 2019

a) \(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)

\(=\sqrt{75}-\sqrt{\frac{16}{3}}+\frac{9}{2}\sqrt{\frac{8}{3}}+2\sqrt{27}\)

\(=5\sqrt{3}-\frac{4}{\sqrt{3}}+3\sqrt{6}+6\sqrt{3}\)

\(=-\frac{4}{\sqrt{3}}+5\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)

\(=-\frac{4}{\sqrt{3}}+11\sqrt{3}+3\sqrt{6}\)

\(=-\frac{4\sqrt{3}}{3}+11\sqrt{3}+3\sqrt{6}\)

b) \(\sqrt{48}-\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)

\(=\sqrt{48}-\sqrt{\frac{16}{3}}+2\sqrt{75}-5\sqrt{\frac{4}{3}}\)

\(=4\sqrt{3}-\frac{4}{\sqrt{3}}+10\sqrt{3}-\frac{10}{\sqrt{3}}\)

\(=-\frac{4}{\sqrt{3}}-\frac{10}{\sqrt{3}}+4\sqrt{3}+10\sqrt{3}\)

\(=-\frac{14\sqrt{3}}{3}+4\sqrt{3}+10\sqrt{3}\)

\(=-\frac{14\sqrt{3}}{3}+14\sqrt{3}\)

c)\(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)

\(=27+12\sqrt{5}+12\sqrt{5}\)

\(=27+24\sqrt{5}\)

d)\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\sqrt{6}+2-\sqrt{3}-\sqrt{2}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)

\(=4+2\sqrt{3}-2\sqrt{3}+4\)

= 8

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)

\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\frac{14}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

= 14

17 tháng 7 2019

a) \(2\sqrt{2}.\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)

\(=2\sqrt{2}.\left(\sqrt{3}-2\right)+9+4\sqrt{2}-2\sqrt{6}\)

\(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)

= 9 (đpcm)

b) \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)

\(=\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2^{\frac{1}{2}}\left(\sqrt{2}-1\right)}\)

\(=\sqrt{2\left(\sqrt{2}-1\right)}\) (đpcm)

Bài 1: Rút gọn biểu thức1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\) ...
Đọc tiếp

Bài 1: Rút gọn biểu thức

1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)

3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)

5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\)   6) \(\left(3\sqrt{20}-\sqrt{125}-15\sqrt{\frac{1}{5}}\right).\sqrt{5}\)

7) \(\left(6\sqrt{128}-\frac{3}{5}\sqrt{50}+7\sqrt{8}\right):3\sqrt{2}\)  8) \(\left(2\sqrt{48}-\frac{3}{2}\sqrt{\frac{4}{3}}+\sqrt{27}\right).2\sqrt{3}\)

9) \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{8}-4\right)^2}\)    10) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

11) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)      12) \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

13) \(\sqrt{15-6\sqrt{6}}\)    14) \(\sqrt{8-2\sqrt{15}}\)    15) \(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)

 

1
26 tháng 11 2017

Giúp mình :<

27 tháng 8 2019

a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)

b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)

c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)

d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)

Bài 2: Thực hiện phép tínha) \(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)b) \(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)c) \(3\sqrt{50}-2\sqrt{75}-4\frac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\frac{1}{3}}\)d) \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)e) \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)f) \(\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\frac{6}{2-\sqrt{10}}-\frac{20}{\sqrt{10}}\)Bài 3: Thực hiện phép...
Đọc tiếp

Bài 2: Thực hiện phép tính

a) \(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)

b) \(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)

c) \(3\sqrt{50}-2\sqrt{75}-4\frac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\frac{1}{3}}\)

d) \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)

e) \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)

f) \(\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\frac{6}{2-\sqrt{10}}-\frac{20}{\sqrt{10}}\)

Bài 3: Thực hiện phép tính

a) \(\sqrt{9-4\sqrt{5}}\)

b) \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)

c) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

d) \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)

e) \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)

f*) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

Bài 4: Rút gọn

a) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}\)

b) \(\left(2\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-2\right)\)

c) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)

d) \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}+\sqrt{6}\)

e) \(\left(\frac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\frac{4}{1+\sqrt{5}}+4\right)\)

f) \(\frac{1}{5}\sqrt{50}-2\sqrt{96}-\frac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\frac{1}{6}}\)

0