K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

19 tháng 12 2021

Đề thiếu rồi bạn

1: góc AHC+góc AKC=180độ

=>AHCK nội tiếp

2: góc AHK=góc ACK=góc ABC

3: AH^2=AI*AK

=>AH^2=2*AM*2NA

mà AH=AM+AN

nên (AM-AN)^2=0

=>AM=AN

=>2AM=2AN

=>AP=AK

=>A nằm chính giữa cung BC

=>A,O,H thẳng hàng

NV
5 tháng 1

Áp dụng BĐT Cô-si:

\(\dfrac{x^2}{x+1}+\dfrac{x+1}{9}\ge2\sqrt{\dfrac{x^2\left(x+1\right)}{9\left(x+1\right)}}=\dfrac{2}{3}x\)

\(\dfrac{y^2}{y+1}+\dfrac{y+1}{9}\ge2\sqrt{\dfrac{y^2\left(y+1\right)}{9\left(y+1\right)}}=\dfrac{2}{3}y\)

Cộng vế:

\(\dfrac{x^2}{x+1}+\dfrac{y^2}{y+1}+\dfrac{x+y+2}{9}\ge\dfrac{2}{3}\left(x+y\right)\)

\(\Leftrightarrow P+\dfrac{1+2}{9}\ge\dfrac{2}{3}.1\)

\(\Rightarrow P\ge\dfrac{1}{3}\)

\(P_{min}=\dfrac{1}{3}\) khi \(x=y=\dfrac{1}{2}\)

NV
5 tháng 1

Áp dụng BĐT Cô-si:

\(3\left(a^2+4\right)\ge3.4a=12a\)

\(b^4+b^4+b^4+81\ge4\sqrt[4]{81b^{12}}=12b^3\)

Cộng vế:

\(3\left(a^2+b^4\right)+93\ge12\left(a+b^3\right)=384\)

\(\Rightarrow a^2+b^4\ge85\)

\(\Rightarrow P\ge85-19=66\)

\(P_{min}=66\) khi \(\left(a;b\right)=\left(2;3\right)\)

NV
22 tháng 2 2021

Câu 4:

D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp

\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)

Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)

Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))

\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)

./

Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)

Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác

Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)

Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q

Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)

\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)

Mặt khác BP song song MF (cùng song song AC)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)

NV
22 tháng 2 2021

Hình vẽ câu 4:

undefined

6 tháng 8 2017

bài nào zậy bạn

8 tháng 8 2017

Câu 3 và caau4 bài giải phương trình nhé

16 tháng 11 2021

b: Xét ΔAHC vuông tại H có HM là đường cao

nên \(AM\cdot AC=AH^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AC=HB\cdot HC\)