K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

lời giải như thế nào bn

 

1: A=-1/2*xy^3*4x^2y^2=-2x^3y^5

Bậc là 8

Phần biến là x^3;y^5

Hệ số là -2

2:

a: P(x)=3x+4x^4-2x^3+4x^2-x^4-6

=3x^4-2x^3+4x^2+3x-6

Q(x)=2x^4+4x^2-2x^3+x^4+3

=3x^4-2x^3+4x^2+3

b: A(x)=P(x)-Q(x)

=3x^4-2x^3+4x^2+3x-6-3x^4+2x^3-4x^2-3

=3x-9

A(x)=0

=>3x-9=0

=>x=3

15 tháng 10 2020

A = 1,7 + | 3,4 - x |

Ta có : | 3, 4 - x | ≥ 0 ∀ x => 1, 7 + | 3, 4 - x | ≥ 1, 7 ∀ x

Dấu "=" xảy ra <=> 3, 4 - x = 0 => x = 3, 4

=> MinA = 1, 7 <=> x = 3, 4

B = -| 1, 4 - x | - 2

Ta có : -| 1, 4 - x | ≤ 0 ∀ x => -| 1, 4 - x | - 2 ≤ -2 ∀ x

Dấu "=" xảy ra <=> 1, 4 - x = 0 => x = 1, 4

=> MaxB = -2 <=> x = 1, 4

8 tháng 11 2021

a/ Ta có: \(\begin{matrix}a\text{ // }b\\a\perp AB\end{matrix}\Rightarrow b\perp AB\)

b/ \(\hat{ACD}+\hat{CDB}=180^o\) (trong cùng phía, a // b)

 \(\Rightarrow\hat{CDB}=180^o-\hat{ACD}=60^o\)

\(\hat{ACD}+\hat{aCD}=180^o\) (kề bù) 

\(\Rightarrow\hat{aCD}=180^o-\hat{ACD}=60^o\)

11 tháng 5 2019

\(x^2-4x+5=\left(x-2\right)^2+1\ge0\)

Vậy M(x) không có nghiệm

11 tháng 5 2019

Vì \(x^2\ge0;4x\ge0\Rightarrow x^2-4x+5\ge0+5>0\)

\(\Rightarrow M\left(x\right)=x^2-4x+5\)không có nghiệm

7 tháng 11 2021

a, Vì a//b và a⊥AB nên b⊥AB

b, Vì a//b nên \(\widehat{CDB}=180^0-\widehat{ACD}=60^0\) (trong cùng phía)

Vì a//b nên \(\widehat{CDB}=\widehat{aCD}=60^0\) (so le trong)

7 tháng 11 2021

dễ mà

a.a//b,a vuông góc với AB

=>b vuông góc với AB

b.Tính CDB bằng cách dựa vào tc góc trong cùng phía

   tính aCD bằng cách dựa vào tc kề bù

30 tháng 8 2021

1/ 

Xét tg AOC và tg BOD có

OA=OB; OC=OD

\(\widehat{AOC}=\widehat{BOD}\) (góc đối đỉnh)

\(\Rightarrow\Delta AOC=\Delta BOD\left(c.g.c\right)\)

Ta có OA=OB; OC=OD => ACBD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thig tứ giác đó là hbh) => AC//BD (trong hình bình hành các cặp cạnh đối // với nhau từng đôi một)

2/ Xét tg ACD và tg BDC có

DC chung

AC=BD; AD=BC (trong hbh các cặp cạnh đối bằng nhau từng đôi một)

\(\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\)

3/

Xet tg DAE và tg CBF có

AD=BC (cạnh đối hbh ACBD)

AE=BF (giả thiết)

\(\widehat{DAE}=\widehat{CBF}\) (Hai góc đối của hình bình hành ACBF)

\(\Rightarrow\Delta DAE=\Delta CBF\left(c.g.c\right)\)

4/

Ta có 

CE//DF (cạnh đối của hbh ACBF)

CE=AC-AE; DF=BD-BF

mà AC=BD; AE=BF

=> CE=DF

=> ECFD là hình bình hành (tứ giác có cặp cạnh đối // và bằng nhau là hbh)

=> DE//CF (trong hbh các cặp cạnh đối // với nhau từng đôi một)

Trong hbh ECFD có EF và CD là hai đường chéo

=> EF và CD cắt nhau tại trung điểm mỗi đường (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mà O là trung điểm CD => O là trung điểm của EF => E; O; F thẳng hàng