K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: (x-2)^2+2(2-x)=0

=>(x-2)^2-2(x-2)=0

=>(x-2)(x-4)=0

=>x=2 hoặc x=4

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...  

23 tháng 10 2021

\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2021

6a.

$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$

$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

Bài 1: 

a: Xét tứ giác BEDF có 

ED//BF

ED=BF

Do đó: BEDF là hình bình hành

Suy ra: BE=DF

c: ta có: BEDF là hình bình hành

nên Hai đường chéo EF và BD cắt nhau tại trung điểm của mỗi đường

mà AC và BD cắt nhau tại trung điểm của mỗi đường

nên AC,BD,EF đồng quy

3 tháng 4 2022

Nếu là câu c 

c, Ta có : BD là phân giác \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(1\right)\)

Ta có : BK là phân giác \(\widehat{ABH}\)

\(\Rightarrow\dfrac{HK}{AK}=\dfrac{BH}{AB}\left(2\right)\)

Ta có: ΔHBA ~ ΔABC (cmt ) 

(*nếu chưa c/m tam giác đồng dạng thì hãy c/m,  làm r thì khỏi )

\(\Rightarrow\dfrac{HB}{AB}=\dfrac{AB}{AC}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\dfrac{AD}{DC}=\dfrac{HK}{AK}\)

\(\Rightarrow AK.AD=HK.CD\left(đpcm\right)\)

c: ĐKXĐ: x<>8

\(\dfrac{3}{2x-16}+\dfrac{3x-20}{x-8}+\dfrac{1}{8}=\dfrac{13x-102}{3x-24}\)

=>\(\dfrac{9}{6\left(x-8\right)}+\dfrac{18x-120}{6\left(x-8\right)}-\dfrac{26x-204}{6\left(x-8\right)}=\dfrac{-1}{8}\)

=>\(\dfrac{18x-111-26x+204}{6\left(x-8\right)}=\dfrac{-1}{8}\)

=>\(\dfrac{-8x+93}{6x-48}=\dfrac{-1}{8}\)

=>\(\dfrac{8x-93}{6x-48}=\dfrac{1}{8}\)

=>8(8x-93)=6x-48

=>64x-744-6x+48=0

=>58x=696

=>x=12

d: ĐKXĐ: x<>1; x<>-1

\(\dfrac{6}{x^2-1}+5=\dfrac{8x-1}{4x+4}+\dfrac{12x-1}{4x-4}\)

=>\(\dfrac{24}{4\left(x-1\right)\left(x+1\right)}+\dfrac{20\left(x^2-1\right)}{4\left(x-1\right)\left(x+1\right)}=\dfrac{\left(8x-1\right)\left(x-1\right)+\left(12x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}\)

=>8x^2-9x+1+12x^2+12x-x-1=24+20x^2-20

=>20x^2+2x=20x^2+4

=>2x=4

=>x=2(loại)

Bài 4: 

c) Ta có: \(\dfrac{x^3}{8}+\dfrac{x^2y}{2}+\dfrac{xy^2}{6}+\dfrac{y^3}{27}\)

\(=\left(\dfrac{x}{2}\right)^3+3\cdot\left(\dfrac{x}{2}\right)^2\cdot\dfrac{y}{3}+3\cdot\dfrac{x}{2}\cdot\left(\dfrac{y}{3}\right)^2+\left(\dfrac{y}{3}\right)^3\)

\(=\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^3\)

\(=\left(\dfrac{-1}{2}\cdot8+\dfrac{1}{3}\cdot6\right)^3=\left(-4+2\right)^3=-8\)

28 tháng 2 2021

1a. 

\(2x^2+7xy+5y^2-5y-2x\)

\(=2x^2+5xy+2xy+5y^2-5y-2x\)

\(=x\left(2x+5y\right)+y\left(2x+5y\right)-\left(2x+5y\right)\)

\(=\left(2x+5y\right)\left(x+y-1\right)\)