Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này làm khá tắt chỗ 3 điểm cực trị, mình trình bày lại để bạn dễ hiểu nhé!
.......
Để y' = 0\(\Leftrightarrow\left[{}\begin{matrix}x=1\\f'\left(\left(x-1\right)^2+m\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2+m=-1\\\left(x-1\right)^2+m=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2=-1-m\left(1\right)\\\left(x-1\right)^2=3-m\left(2\right)\end{matrix}\right.\)
Để hàm số có 3 điểm cực trị thì y' = 0 có 3 nghiệm phân biệt.
Ta có 2 trường hợp.
+) \(TH_1:\) (1) có nghiệm kép x = 1 hoặc vô nghiệm và (2) có hai nghiệm phân biệt khác 1.
\(\Rightarrow\left[{}\begin{matrix}-1-m\le0\\3-m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge-1\\m< 3\end{matrix}\right.\) \(\Leftrightarrow-1\le m< 3\)
+) \(TH_2:\) (2) có nghiệm kép x = 1 và (2) có một nghiệm phân biệt khác 1.
\(\Rightarrow\left[{}\begin{matrix}-1-m>0\\3-m\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Leftrightarrow m\in\varnothing\)
\(\Rightarrow-1\le m< 3\Rightarrow S=\left\{-1;0;1;2\right\}\)
Do đó tổng các phần tử của S là \(-1+0+1+2=2\)
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=1\Rightarrow y=0\\x=-1\Rightarrow y=0\end{matrix}\right.\)
\(\Rightarrow A\left(0;1\right);B\left(1;0\right);C\left(-1;0\right)\)
\(S=\dfrac{1}{2}.\left|y_A-y_B\right|.\left|x_B-x_C\right|=\dfrac{1}{2}.1.2=1\)
B, chắc chắn 1 trong 2 thẻ rút được là 0 hoặc 5 vì chia hết cho 5
Mà ta tính được 20 số chia hết cho 5
Ta tính được xắc xuất ra mỗi thẻ là 100÷20=5%
Iem mới lớp 6 sai mong anh TC
a)
A : "Hai thẻ rút được lập nên một số có hai chữ số"
P(A) = \(\frac{A_9^2}{A_{100}^2}\)= \(\frac{9.8}{100.99}\) ~ 0,0073
b/ B : "Hai thẻ rút được lập nên một số chia hết cho 5"
Số chia hết cho 5 tân cùng phải là 0 hoặc 5. Để có biến cố B thichs hợp với ta rút thẻ thứ hai một cách tùy ý trong 20 thẻ mang 5;10;15;20;...;95;100, và rút 1 trong 99 thẻ còn lại đặt vào vị trí đầu, Do số trường hợp thuận lợi cho 99,20
P(B) = \(\frac{99.20}{A^2_{100}}\)= 0,20
@minhnguvn
\(Xác\text{ }suất\text{ }ít\text{ }nhất\text{ }để\text{ }một\text{ }trong\text{ }ba\text{ }cầu\text{ }thủ\text{ }gi\text{ }bàn\text{ }là:\)
\(1-\left(1-x\right)\left(1-y\right)\cdot0,4=0,976_{\left(1\right)}\)
\(Xác\text{ }suất\text{ }để\text{ }cả\text{ }ba\text{ }cầu\text{ }thủ\text{ }đều\text{ }ghi\text{ }bàn\text{ }là:\)
\(0,6xy=0,336\Leftrightarrow xy=56\Leftrightarrow y=\dfrac{0,56}{x}_{\left(2\right)}\)
\(Thay_{\left(2\right)}vào_{\left(1\right)}ta\text{ }có:\)
\(1-\left(1-x\right)\left(1-\dfrac{0,56}{x}\right)\cdot0,4=0,976\)
\(\Leftrightarrow\left(1-\dfrac{0,56}{x}-x+0,56\right)\cdot0,4=0,24\)
\(\Leftrightarrow1,56-\dfrac{0,56}{x}-x=0,06\)
\(\Leftrightarrow\dfrac{0,56}{x}+x=1,5\Leftrightarrow x^2-1,5x+0,56=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0,7\Rightarrow y=0,8\left(ktm\right)\\x=0,8\Rightarrow y=7\left(tm\right)\end{matrix}\right.\)
\(Xác\text{ }suất\text{ }để\text{ }có\text{ }đúng\text{ }hai\text{ }cầu\text{ }thủ\text{ }ghi\text{ }bàn\text{ }là:\\ 0,8\cdot0,7\cdot0,4+0,8\cdot0,3\cdot0,6+0,2\cdot0,7\cdot0,6=0,452\)
Giả sử : \(z=a+bi\left(a;b\in R\right)\) ; M(x;y) là điểm biểu diễn số phức z:
ta có: \(\left|\left(a+bi\right)i-1\right|\le2\) \(\Leftrightarrow\left|ai-b-1\right|\le2\) \(\Leftrightarrow a^2+\left(b+1\right)^2\le4\) \(\Leftrightarrow a^2+b^2+2b-3\le0\)
Vậy quỹ đạo của điểm M(z) là miền trong của hình tròn tâm I(0;-1) , bán kính R=2(Kể cả những điểm nằm trên đường tròn)