K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

mk lm mẫu cho bạn 1 phần nhé

a) \(A=3x^2+y^2+10x-2xy+26\)

\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)

\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)

Dấu "=" xảy ra <=>  \(x=y=-2,5\)

Vậy MIN A = 13,5  khi  x = y = - 2,5

4 tháng 10 2018

Cảm ơn Đường Quỳnh Giang nhiều nhé😊

a: \(x^2+3y^2-4x+6y+7=0\)

\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)

NV
18 tháng 6 2019

a/

\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-\frac{5}{2}\right)^2+\frac{27}{2}=0\)

\(VT>0\Rightarrow\) ko tồn tại x; y thỏa mãn

b/

\(\Leftrightarrow4x^2-4x+1+3\left(y^2+10y+25\right)+2=0\)

\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)

\(\Rightarrow\) Không tồn tại x; y thỏa mãn

c/

\(3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}=0\)

Không tồn tại x; y thỏa mãn

17 tháng 8 2019

A= 2x^2 + y^2 - 2xy -2x+3

A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2

A= (x-y)^2 + (x-1)^2 + 2

(x-y)^2> hoặc = 0 với mọi giá trị của x

(x-1)^2 > hoặc =0 với mọi giá trị của x

=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x

=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2

=> A lớn hơn hoặc bằng 2

=> GTNN của A=2 tại x=y=1

a. 12x3y – 24x2y2 + 12xy3        b. x2 – 6 x +xy  – 6yc. 2x2  + 2xy   x – y  d. x3– 3x2 + 3x – 1   e. 3x2 – 3y2 – 12x – 12yf. x2  – 2xy – x2  + 4y2  g. x2 + 2x + 1   – 16            h.x2 – 2x – 4y2  + 1i. x2 – 2x –3j. x2 + 4x –12                           k. x2 – 8 x – 9l. x2 + x – 6  a. 12x3y – 24x2y2 + 12xy3        b. x2 – 6 x +xy  – 6yc. 2x2  + 2xy   x – y  d. x3– 3x2 + 3x – 1   e. 3x2 – 3y2 – 12x – 12yf. x2  – 2xy – x2  + 4y2  g. x2 + 2x + 1   – 16            h.x2 – 2x – 4y2  + 1i. x2 – 2x...
Đọc tiếp

a. 12x3y – 24x2y2 + 12xy3        

b. x2 – 6 x +xy  – 6y

c. 2x2  + 2xy   x – y  

d. x3– 3x2 + 3x – 1   

e. 3x2 – 3y2 – 12x – 12y

f. x2  – 2xy – x2  + 4y2

  

g. x2 + 2x + 1   – 16            

h.x2 – 2x – 4y2  + 1

i. x2 – 2x –3

j. x2 + 4x –12                           

k. x2 – 8 x – 9

l. x2 + x – 6  

a. 12x3y – 24x2y2 + 12xy3        

b. x2 – 6 x +xy  – 6y

c. 2x2  + 2xy   x – y  

d. x3– 3x2 + 3x – 1   

e. 3x2 – 3y2 – 12x – 12y

f. x2  – 2xy – x2  + 4y2

  

g. x2 + 2x + 1   – 16            

h.x2 – 2x – 4y2  + 1

i. x2 – 2x –3

j. x2 + 4x –12                           

k. x2 – 8 x – 9

l. x2 + x – 6  

 

3
24 tháng 11 2021

nhìu giữ cha !!!!

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

a.

$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.

$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.

$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$

d.

$x^3-3x^2+3x-1=(x-1)^3$

e.

$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$

$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$

f.

$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$

5 tháng 10 2021

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

5 tháng 10 2021

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

23 tháng 10 2021

\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)

18 tháng 12 2022

\(a,2xy\left(x^2+xy-3y^2\right)=2x^3y+2x^2y^2-6xy^3\)

\(b,\left(x+2\right)\left(3x^2-4x\right)=3x^3-4x^2+6x^2-8x=3x^3+2x^2-8x\)

\(c,\left(3+3x^2-8x-20\right):\left(x+2\right)=3x-14\left(dư:11\right)\)

22 tháng 9 2021

\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)

Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)

\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)