K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 5 2021

Trong mp đáy, qua B kẻ đường thẳng song song AC, lần lượt cắt DA và DC kéo dài tại E và F

\(\Rightarrow AC||\left(SEF\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SEF\right)\right)=d\left(A;\left(SEF\right)\right)\)

Gọi I là giao điểm AC và BD

Theo định lý Talet: \(\dfrac{ID}{IB}=\dfrac{DC}{AB}=3\Rightarrow\dfrac{ID}{BD}=\dfrac{3}{4}\)

Cũng theo Talet: \(\dfrac{DA}{DE}=\dfrac{DI}{DB}=\dfrac{3}{4}\Rightarrow AD=\dfrac{3}{4}DE\Rightarrow AE=\dfrac{1}{4}DE\)

\(\Rightarrow d\left(A;\left(SEF\right)\right)=\dfrac{1}{4}d\left(D;\left(SEF\right)\right)\)

Trong tam giác vuông EDF, kẻ \(DH\perp EF\) , trong tam giác vuông SDH, kẻ \(DK\perp SH\)

\(\Rightarrow DK\perp\left(SEF\right)\Rightarrow DK=d\left(D;\left(SEF\right)\right)\)

\(DE=\dfrac{4}{3}AD=\dfrac{4a}{3}\)\(DF=\dfrac{4}{3}DC=4a\)

\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{5}{8a^2}\)

\(\dfrac{1}{DK^2}=\dfrac{1}{SD^2}+\dfrac{1}{DH^2}=\dfrac{1}{48a^2}+\dfrac{5}{8a^2}\Rightarrow DK=\dfrac{4a\sqrt{93}}{31}\)

\(\Rightarrow d\left(AC;SB\right)=\dfrac{1}{4}DK=\dfrac{a\sqrt{93}}{31}\)

NV
8 tháng 9 2020

2.

\(\Leftrightarrow4cos^3x-3cosx-\left(1-2sin^2x\right)+9sinx-4=0\)

\(\Leftrightarrow cosx\left(4cos^2x-3\right)+2sin^2x+9sinx-5=0\)

\(\Leftrightarrow cosx\left(4\left(1-sin^2x\right)-3\right)+\left(2sinx-1\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow cosx\left(1-4sin^2x\right)+\left(2sinx-1\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow\left(cosx+2sinx.cosx\right)\left(1-2sinx\right)-\left(1-2sinx\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(cosx-sinx+2sinx.cosx-5\right)=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{2}cos\left(x+\frac{\pi}{4}\right)+sin2x-5\right)=0\)

\(\Leftrightarrow1-2sinx=0\) (do \(\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\le\sqrt{2};sin2x\le1\) nên ngoặc sau luôn âm)

\(\Leftrightarrow sinx=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

NV
8 tháng 9 2020

1.

Đặt \(\frac{x}{3}=t\) pt trở thành:

\(cos4t=sin^23t\Leftrightarrow2cos4t=1-cos6t\)

\(\Leftrightarrow cos6t+2cos4t-1=0\)

\(\Leftrightarrow4cos^32t-3cos2t+2\left(2cos^22t-1\right)-1=0\)

\(\Leftrightarrow4cos^32t+2cos^22t-3cos2t-3=0\)

\(\Leftrightarrow\left(cos2t-1\right)\left(4cos^22t+6cos2t+3\right)=0\)

\(\Leftrightarrow cos2t=1\Leftrightarrow cos\frac{2x}{3}=1\)

\(\Leftrightarrow\frac{2x}{3}=k2\pi\Leftrightarrow x=k3\pi\)

16 tháng 7 2021

3cos2x + 10sinx + 1 = 3( 1 - 2sinx^2) + 10 sinx + 1

                                 = - 6 sinx^2 + 10sinx + 4

                                 = 2(3sinx + 1)(2- sinx)= 0

16 tháng 7 2021

ý 2 là trên đoạn nào bn ? 

4 tháng 7 2021

ĐK: `x \ne kπ`

`cot(x-π/4)+cot(π/2-x)=0`

`<=>cot(x-π/4)=-cot(π/2-x)`

`<=>cot(x-π/4)=cot(x-π/2)`

`<=> x-π/4=x-π/2+kπ`

`<=>0x=-π/4+kπ` (VN)

Vậy PTVN.

1 tháng 8 2021

hahihihihi

21 tháng 11 2023

Bài 2:

Sửa đề: \(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2x^2+3x-5}{x-1}nếux\ne1\\2a+1nếux=1\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2x^2+3x-5}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+5\right)\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}2x+5=2+5=7\)

f(1)=2a+1

Để hàm số liên tục khi x=1 thì \(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)

=>2a+1=7

=>2a=6

=>a=3

25 tháng 9 2021

\(2cos^2x-4sinxcosx=0\) 

\(\left\{{}\begin{matrix}cosx=0\\cosx-2sinx=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\cos\left(\alpha+x\right)=0vớicos\alpha=\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

8 tháng 9 2023

\(sina=\dfrac{1}{2}\left(0\le a\le\dfrac{\pi}{2}\right)\)

\(sin^2a+cos^2a=1\)

\(\Rightarrow cos^2a=1-sin^2a=1-\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Rightarrow cosa=\dfrac{\sqrt[]{3}}{2}\) \(\left(0\le a\le\dfrac{\pi}{2}\Rightarrow cosa>0\right)\)

\(sin\left(a-\dfrac{\pi}{3}\right)\)

\(=sina.cos\dfrac{\pi}{3}+cosa.sin\dfrac{\pi}{3}\)

\(\)\(=\dfrac{1}{2}.\dfrac{1}{2}+\dfrac{\sqrt[]{3}}{2}.\dfrac{\sqrt[]{3}}{2}\)

\(\)\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)