Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.
a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng
b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)
c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)
d) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) => \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A
Ta có: AB2 = 22 + 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A
vậy...
e) Có thể đề của bạn là tam giác ABE vuông cân tại E ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)
g) M nằm trên Ox => M (m; 0)
Tam giác OMA cân tại O <=> OM = OA Hay OM2 = OA2 <=> m2 = (-1)2 + 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = - \(\sqrt{2}\)
Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )
1 -3 A -5 3 B 2 -2 C M
a) Gọi điểm M(x,0). Ta có MA = MB
=> MA2 = MB2
=> (1 - x)2 + (-3 - 0)2 = (3 - x)2 + (-5 - 0)2
1 - 2x + x2 + 9 = 9 - 6x + x2 + 25
4x = 24
x = 6
Vậy điểm M(6, 0)
b) Gọi N(0, y), ta có NA vuông góc với AB
=> Tích vô hướng giữa hai vector AN và vector AB bằng 0
=> (0 - 1, y + 3) . (3 - 1, -5 + 3) = 0
-2 - 2(y + 3) = 0
y = -4
Vậy N(0, -4)
Trong mặt phẳng oxy cho 2 điểm A(2;4), B(1;1) tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại B
Giả sử \(C\) cần tìm có tọa độ là \(\left(x;y\right)\). Để tam giác ABC vuông cân tại B ta phải có:
\(\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=0\\\left|\overrightarrow{BA}\right|=\left|\overrightarrow{BC}\right|\end{matrix}\right.\) với \(\overrightarrow{BA}=\left(1;3\right)\) và \(\overrightarrow{BC}=\left(x-1;y-1\right)\)
Điều đó có nghĩa là:
\(\left\{{}\begin{matrix}1.\left(x-1\right)+3\left(y-1\right)=0\\1^2+3^2=\left(x-1\right)^2+\left(y-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\\left(3-3y\right)^2+\left(y-1\right)^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\10y^2-20y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C\left(4;0\right)\\C\left(-2;2\right)\end{matrix}\right.\)
a.
Gọi (D):y=ax+b chứa điểm A, C
(D'):y=a'x+b' chứa điểm B, C
* Ta có: A thuộc (D) khi 1= 2a+b (1)
C thuộc (D) khi 4= 3a+b (2)
Giải hệ (1), (2) ta suy ra a=3 , b=-5
* Ta có: B thuộc (D') khi 3=6a'+b' (3)
C thuộc (D') khi 4=3a'+b' (4)
Giải hệ (3), (4) ta suy ra a=-1/3 , b= 5
Ta thấy: a.a' = 3.(-1/3)=-1
Suy ra (D) vuông góc (D') tại điểm chung C của của 2 cạnh (5)
Vậy tam giác ABC vuông tại C
Theo công thức tính cạnh của đoạn thẳng trong hệ trục tọa độ ta có:
AC=\(\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(2-3\right)^2+\left(1-4\right)^2}\)\(=\sqrt{10}\)
BC=\(\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}=\sqrt{\left(6-3\right)^2+\left(3-4\right)^2}\)\(=\sqrt{10}\)
Vậy AC=BC (6)
Từ (5) và (6) ta suy ra tam giác ABC vuông cân tại C
SABC=\(\dfrac{1}{2}\).AB.BC=\(\dfrac{1}{2}.\sqrt{10}.\sqrt{10}=\dfrac{1}{2}.10=\)5 (đvdt)
b. Làm tương tự câu a tìm độ dài các cạnh AB, BD, DA và tính diện tích bằng công thức SABD=\(\sqrt{p\left(p-AB\right)\left(p-BD\right)\left(p-DA\right)}\) với p là nửa chu vi tam giác ABD \(p=\dfrac{1}{2}\left(AB+BD+DA\right)\)
Tiếp tục dùng công thức SABD=\(=\dfrac{1}{2}.AB.BD.sinB\) các số liệu nêu trên đã có, chỉ cần thế vào là có góc B
Gọi I là tâm. Tìm độ dài bán kình bằng công thức SABD=\(\dfrac{AB.BD.DA}{4AI}\)
ta tìm được độ dài AI còn cách xác định tâm thì dựa vào giao điểm 2 đường thẳng (d) chứa đoạn AI và (d') chứa đoạn BI là xong
a: Tọa độ trung điểm của AC là:
\(\left\{{}\begin{matrix}x=\dfrac{6+2}{2}=\dfrac{8}{2}=4\\y=\dfrac{1+5}{2}=\dfrac{6}{2}=3\end{matrix}\right.\)
b: A(6;1); B(-1;2); C(2;5)
\(\overrightarrow{AB}=\left(-7;1\right);\overrightarrow{AC}=\left(-4;4\right)\)
Vì \(\dfrac{-7}{-4}\ne\dfrac{1}{4}\)
nên A,B,C không thẳng hàng
=>A,B,C lập được thành 1 tam giác
c: Tọa độ trọng tâm của ΔABC là:
\(\left\{{}\begin{matrix}x=\dfrac{6-1+2}{3}=\dfrac{7}{3}\\y=\dfrac{1+2+5}{3}=\dfrac{8}{3}\end{matrix}\right.\)
d: \(AB=\sqrt{\left(-1-6\right)^2+\left(2-1\right)^2}=\sqrt{7^2+1^2}=5\sqrt{2}\)
\(AC=\sqrt{\left(2-6\right)^2+\left(5-1\right)^2}=\sqrt{4^2+4^2}=4\sqrt{2}\)
\(BC=\sqrt{\left(2+1\right)^2+\left(5-2\right)^2}=3\sqrt{2}\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+BC+AC=5\sqrt{2}+4\sqrt{2}+3\sqrt{2}=12\sqrt{2}\)
Xét ΔABC có \(AB^2=BC^2+CA^2\)
nên ΔACB vuông tại C
=>\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot3\sqrt{2}\cdot4\sqrt{2}=2\sqrt{2}\cdot3\sqrt{2}=12\)
\(\overrightarrow{AC}=\left(2;-4\right);\overrightarrow{BC}=\left(6;3\right)\)
Vì 2.6+(-4).3=0 => AC_|_BC => tg ABC là tam giác vuông