K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

a, \(2sin^2x+\sqrt{3}sin2x=3\)

\(\Leftrightarrow-\left(1-2sin^2x\right)+\sqrt{3}sin2x=2\)

\(\Leftrightarrow\sqrt{3}sin2x-cos2x=2\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

1 tháng 9 2021

d, \(cosx-\sqrt{3}sinx=2cos\left(\dfrac{\pi}{3}-x\right)\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=cos\left(\dfrac{\pi}{3}-x\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{3}-x\right)\)

\(\Leftrightarrow-2sin\dfrac{\pi}{3}.sinx=0\)

\(\Leftrightarrow sinx=0\)

\(\Leftrightarrow x=k\pi\)

a: y'=4x^2+2x-m

Δ=2^2-4*4*(-m)=16m+4

y'>=0 với mọi x thì 16m+4<=0

=>m<=-1/4

b: x=1 =>y=2+1-m+5=-m+8 và y'=4+2-m=-m+6

y-f'(1)=f(1)(x-1)

=>y=(-m+8)(x-1)-m+6

=x(-m+8)+m-8-m+6

=x(-m+8)-2

Tọa độ A là: x=0 và y=-2

Tọa độ B là: y=0 và x=2/(-m+8)

=>OA=2; OB=2/|m-8|

Theo đề, ta có: |m-8|=1

=>m=9 hoặc m=7

NV
15 tháng 3 2022

\(SA\perp\left(ABCD\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AD\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAD vuông tại A

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)

\(\Rightarrow\Delta SBC\) vuông tại B

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\)

\(\Rightarrow\Delta SCD\) vuông tại D

b.

\(\left\{{}\begin{matrix}BC\perp\left(SAB\right)\Rightarrow BC\perp AH\\AH\perp SB\end{matrix}\right.\) \(\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\) (1)

\(\left\{{}\begin{matrix}CD\perp\left(SAD\right)\Rightarrow CD\perp AK\\AK\perp SD\end{matrix}\right.\) \(\Rightarrow AK\perp\left(SCD\right)\Rightarrow AK\perp SC\) (2)

(1);(2) \(\Rightarrow SC\perp\left(AHK\right)\)

NV
15 tháng 3 2022

undefined

d: ĐKXĐ: 2sin x+1<>0

=>sin x<>-1/2

=>x<>-pi/6+k2pi và x<>7/6pi+k2pi

c: ĐKXĐ: \(4\sqrt{2}\cdot sinx\cdot cosx+\sqrt{6}< >0\)

=>\(2\sqrt{2}\cdot sin2x+\sqrt{6}< >0\)

=>\(2sin2x+\sqrt{3}\ne0\)

=>\(sin2x\ne-\dfrac{\sqrt{3}}{2}\)

=>2x<>-pi/3+k2pi và 2x<>4/3pi+k2pi

=>x<>-pi/6+kpi và x<>2/3pi+kpi

16 tháng 7 2021

\(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) 

Thấy : \(sinx+cosx+2\ge-1-1+2=0\)  . " = " ko xảy ra nên : \(sinx+cosx+2>0\) 

Suy ra : \(\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\)  (*)

(*) có no \(\Leftrightarrow\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\Leftrightarrow2y^2-6y+5\ge4y^2-4y+1\Leftrightarrow-2y^2-2y+4\ge0\)

\(\Leftrightarrow-y^2-y+2\ge0\)  \(\Leftrightarrow-2\le y\le1\)

Suy ra : Max y = 1 . Chọn B 

16 tháng 7 2021

21 : \(cosx-\sqrt{3}sinx=0\) 

cos x = 0 thay vào : sin x = 0 ( L ) 

cos x khác 0 \(\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\); ta có : \(1-\sqrt{3}tanx=0\Leftrightarrow tanx=\dfrac{1}{\sqrt{3}}\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\left(k\in Z\right)\)

NV
17 tháng 7 2021

49.

\(\Leftrightarrow m.sin2x+2\left(cos2x+1\right)=m+5\)

\(\Leftrightarrow m.sin2x+2cos2x=m+3\)

Pt có nghiệm khi:

\(m^2+2^2\ge\left(m+3\right)^2\)

\(\Leftrightarrow6m\le-5\Rightarrow m\le-\dfrac{5}{6}\)

\(\Rightarrow m=\left\{-3;-2;-1\right\}\)

50.

\(\Leftrightarrow m.2sin^2x+4sinx.cosx+3m.2cos^2x=2\)

\(\Leftrightarrow m\left(1-cos2x\right)+2sin2x+3m\left(1+cos2x\right)=2\)

\(\Leftrightarrow m.cos2x+sin2x=1-2m\)

Pt có nghiệm khi:

\(m^2+1\ge\left(1-2m\right)^2\Leftrightarrow3m^2-4m\le0\)

\(\Rightarrow m\in\left[0;\dfrac{4}{3}\right]\)

NV
17 tháng 7 2021

51.

ĐKXĐ: \(x\ne k\pi\)

\(\dfrac{5-4cosx}{sinx}=\dfrac{6tana}{1+tan^2a}\)

\(\Leftrightarrow\dfrac{5-4cosx}{sinx}=\dfrac{6sina}{cosa}.cos^2a=3sin2a\)

\(\Leftrightarrow5-4cosx=3sin2a.sinx\)

\(\Leftrightarrow3sin2a.sinx+4cosx=5\)

Pt có nghiệm khi:

\(\left(3sin2a\right)^2+4^2\ge5^2\)

\(\Leftrightarrow sin^22a\ge1\)

\(\Leftrightarrow sin^22a=1\Leftrightarrow cos2a=0\)

\(\Leftrightarrow2a=\dfrac{\pi}{2}+k\pi\Rightarrow a=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

\(\Rightarrow a=\left\{\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{5\pi}{4};\dfrac{7\pi}{4}\right\}\)

Em tự cộng và chọn kết quả nhé

NV
15 tháng 7 2021

13.

\(y=1+sin2x-\left(1-sin^22x\right)=sin^22x+sin2x\)

\(y=\left(sin2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(\left\{{}\begin{matrix}sin^22x\le1\\sin2x\le1\end{matrix}\right.\) \(\Rightarrow y\le1+1=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=2\end{matrix}\right.\) 

\(\Rightarrow4a+b=1\)

14.

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=x+\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{4}=\dfrac{\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

\(\Rightarrow x=\left\{\dfrac{\pi}{6};\dfrac{5\pi}{6}\right\}\)

\(\Rightarrow\dfrac{\pi}{6}+\dfrac{5\pi}{6}=\pi\)

NV
15 tháng 7 2021

15.

\(3cosx+2cos^2x-1-cos3x+1=cosx-cos3x\)

\(\Leftrightarrow cos^2x+cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm lớn nhất \(x=\dfrac{3\pi}{2}\)

\(sin\left(\dfrac{3\pi}{2}-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

16.

\(cos\left(2x+\dfrac{2\pi}{3}\right)+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)

\(\Leftrightarrow cos\left[\pi-2\left(\dfrac{\pi}{6}-x\right)\right]+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)

\(\Leftrightarrow-cos\left[2\left(\dfrac{\pi}{6}-x\right)\right]+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)

\(\Leftrightarrow1-2cos^2\left(\dfrac{\pi}{6}-x\right)+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)

\(\Leftrightarrow1-2t^2+4t=\dfrac{5}{2}\Leftrightarrow4t^2-8t+3=0\)