K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

1: Xét (O) có

ΔABD nội tiếp

AB là đường kính

Do đó: ΔABD vuông tại D

=>AD\(\perp\)BD tại D

=>BD\(\perp\)AC tại D

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>AE\(\perp\)EB tại E

=>AE\(\perp\)CB tại E

Xét ΔCAB có

AE,BD là các đường cao

AE cắt BD tại H

Do đó: H là trực tâm của ΔCAB

=>CH\(\perp\)AB tại K

2: ΔCDH vuông tại D

mà DF là đường trung tuyến

nên DF=FH

=>ΔFDH cân tại F

=>\(\widehat{FDH}=\widehat{FHD}\)

mà \(\widehat{FHD}=\widehat{KHB}\)(hai góc đối đỉnh)

và \(\widehat{KHB}=\widehat{DAB}\left(=90^0-\widehat{DBA}\right)\)

nên \(\widehat{FDH}=\widehat{DAB}\)

Ta có: ΔOBD cân tại O

=>\(\widehat{ODB}=\widehat{OBD}=\widehat{DBA}\)

\(\widehat{FDO}=\widehat{FDH}+\widehat{ODB}\)

\(=\widehat{DBA}+\widehat{DAB}=90^0\)

=>DF là tiếp tuyến của (O)

NV
28 tháng 8 2021

19.

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)=4\Rightarrow-2\le a+b\le2\)

\(P=3\left(a+b\right)+ab=3\left(a+b\right)+\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=\dfrac{1}{2}\left(a+b\right)^2+3\left(a+b\right)-1\)

Đặt \(a+b=x\Rightarrow-2\le x\le2\)

\(P=\dfrac{1}{2}x^2+3x-1=\dfrac{1}{2}\left(x+2\right)\left(x+4\right)-5\ge-5\) (đpcm)

Dấu "=" xảy ra khi \(x=-2\) hay \(a=b=-1\)

NV
28 tháng 8 2021

20.

Đặt \(P=2a+2ab+abc\)

\(P=2a+ab\left(2+c\right)\le2a+\dfrac{a}{4}\left(b+2+c\right)^2=2a+\dfrac{a}{4}\left(7-a\right)^2\)

\(P\le\dfrac{1}{4}\left(a^3-14a^2+57a-72\right)+18=18-\dfrac{1}{4}\left(8-a\right)\left(a-3\right)^2\le18\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;2;0\right)\)

22 tháng 10 2021

\(a,=7\cdot6+15:5=42+3=45\\ b,=6+3\sqrt{5}-6=3\sqrt{5}\)

22 tháng 10 2021

Cảm ơn nhiều nha

5:

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB^2=AE*AD

Xet (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>AH*AO=AB^2=AE*AD

=>AE/AO=AH/AD

16 tháng 5 2023

vẽ hình kiểu gì vậy ạ?

 

a: \(Q=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{x-4}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{x-4}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\cdot\left(-1\right)}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

b: Khi x=4-2căn 3 thì \(Q=\dfrac{\sqrt{3}-1+2}{\sqrt{3}-1-3}=\dfrac{\sqrt{3}+1}{\sqrt{3}-4}=\dfrac{-7-5\sqrt{3}}{13}\)

c: Q>1/6

=>Q-1/6>0

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{1}{6}>0\)

=>\(\dfrac{6\sqrt{x}+12-\sqrt{x}+3}{6\left(\sqrt{x}-3\right)}>0\)

=>\(\dfrac{5\sqrt{x}+9}{6\left(\sqrt{x}-3\right)}>0\)

=>căn x-3>0

=>x>9

1: Khi x=25 thì A=(2*5)/(5+2)=10/7

2: P=A+B

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{3\sqrt{x}}{\sqrt{x}-2}-\dfrac{5x+4}{x-4}\)

\(=\dfrac{2x-4\sqrt{x}+3x+6\sqrt{x}-5x-4}{x-4}=\dfrac{2\left(\sqrt{x}-2\right)}{x-4}\)

\(=\dfrac{2}{\sqrt{x}+2}\)

3: căn x+2>=2

=>P<=2/2=1

Dấu = xảy ra khi x=0

Câu 2: 

Ta có: \(x^2-2\left(m+1\right)x+m^2+4=0\)

a=1; b=-2m-2; \(c=m^2+4\)

\(\text{Δ}=b^2-4ac\)

\(=\left(-2m-2\right)^2-4\cdot\left(m^2+4\right)\)

\(=4m^2+8m+4-4m^2-16\)

=8m-12

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow8m>12\)

hay \(m>\dfrac{3}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)=2m+2\\x_1x_2=m^2+4\end{matrix}\right.\)

Vì x1 là nghiệm của phương trình nên ta có: 

\(x_1^2-2\left(m+1\right)\cdot x_1+m^2+4=0\)

\(\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta có: \(x_1^2+2\left(m+1\right)x_2=2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2-2m^2-20=0\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-3m^2-24=0\)

\(\Leftrightarrow2\left(m+1\right)\cdot\left(2m+2\right)-3m^2-24=0\)

\(\Leftrightarrow4m^2+8m+4-3m^2-24=0\)

\(\Leftrightarrow m^2+8m-20=0\)

Đến đây bạn tự tìm m là xong rồi

23 tháng 7 2021

Cảm ơn b nha

6 tháng 8 2017

bài nào zậy bạn

8 tháng 8 2017

Câu 3 và caau4 bài giải phương trình nhé