Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
c, Gọi \(\left(D_3\right):y=ax+b\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}a=-2;b\ne0\\3x+3=ax+b,\forall x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-2\end{matrix}\right.\)
Vậy \(\left(D_3\right):y=-2x-2\)
a: Xét (O) có AB là đường kính
nên \(sđ\stackrel\frown{AB}=180^0\)
\(sđ\stackrel\frown{DA}_{nhỏ}=sđ\stackrel\frown{AC}_{nhỏ}+sđ\stackrel\frown{CD}_{nhỏ}\)
\(=60^0+60^0=120^0\)
\(sđ\stackrel\frown{DA}_{lớn}=360^0-sđ\stackrel\frown{DA}_{nhỏ}=360^0-120^0=240^0\)
b:
\(sđ\stackrel\frown{CB}=sđ\stackrel\frown{CD}+sđ\stackrel\frown{BD}=60^0+60^0=120^0\)
Xét (O) có
\(\widehat{TCB}\) là góc tạo bởi tiếp tuyến CT và dây cung CB
=>\(\widehat{TCB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CB}=\dfrac{1}{2}\cdot120^0=60^0\)
Xét (O) có
\(\widehat{TCD}\) là góc tạo bởi tiếp tuyến CT và dây cung CD
=>\(\widehat{TCD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CD}=\dfrac{1}{2}\cdot60^0=30^0\)
=>\(\widehat{TCD}=\dfrac{1}{2}\cdot\widehat{TCB}\)
=>CD là phân giác của góc BCT
Xin lỗi bạn nhiều nha mình chỉ làm được câu a với câu b thôi còn câu c mình chịu mong bạn thông cảm
Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông ta có:
$AH^2=BH.CH=4.6=24$
$\Rightarrow AH=\sqrt{24}=2\sqrt{6}$ (cm)
$AB^2=BH.BC=BH(BH+CH)=4(4+6)=40$
$\Rightarrow AB=\sqrt{40}=2\sqrt{10}$ (cm)
b.
$AC^2=CH.BC=6(6+4)=60$
$\Rightarrow AC=\sqrt{60}=2\sqrt{15}$ (cm)
$AM=AC:2=\sqrt{15}$ (cm)
$\tan \widehat{AMB}=\frac{AB}{AM}=\frac{2\sqrt{10}}{\sqrt{15}}=\frac{2\sqrt{6}}{3}$
$\Rightarrow \widehat{AMB}=59^0$
c.
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABM$:
$BK.BM=AB^2(1)$
Áp dụng hệ thức lượng với tam giác $ABC$:
$AB^2=BH.BC(2)$
Từ $(1); (2)\Rightarrow BK.BM=BH.BC$
a: Ta có: \(K=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
b: Để K<0 thì x-1<0
hay x<1
Kết hợp ĐKXĐ, ta được: 0<x<1