K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2021

\(B_2=\left\{x;x=2k,k\in N\right\}\)

\(B_4=\left\{x;x=4m,m\in N\right\}\)

Do \(4m=2.\left(2m\right)\Rightarrow B_4\subset B_2\)

\(\Rightarrow B_2\cap B_4=B_4\)

NV
19 tháng 1

\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)

Quy tắc: tam thức bậc 2 ko đổi dấu khi \(\Delta< 0\) (có dấu = hay ko phụ thuộc đề yêu cầu \(f\left(x\right)\) có dấu = hay ko)

Khi đã có \(\Delta< 0\) thì dấu \(f\left(x\right)\) chỉ còn phụ thuộc a. Nếu a dương thì \(f\left(x\right)\) dương trên R, nếu a âm thì \(f\left(x\right)\) âm trên R.

19 tháng 1

em cảm ơn ạ

NV
12 tháng 11 2021

11c.

Từ đề bài ta có:

\(\left\{{}\begin{matrix}\dfrac{16a-b^2}{4a}=\dfrac{9}{2}\\16a+4b+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2b^2=-4a\\b=-4a-1\end{matrix}\right.\)

\(\Rightarrow2b^2-b=1\Leftrightarrow2b^2-b-1=0\Rightarrow\left[{}\begin{matrix}b=1\Rightarrow a=-\dfrac{1}{2}\\b=-\dfrac{1}{2}\Rightarrow a=-\dfrac{1}{8}\end{matrix}\right.\)

Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=-\dfrac{1}{2}x^2+x+4\\y=-\dfrac{1}{8}x^2-\dfrac{1}{2}x+4\end{matrix}\right.\)

NV
12 tháng 11 2021

4f.

Từ đề bài ta có:

\(\left\{{}\begin{matrix}1+b+c=0\\\dfrac{4c-b^2}{4}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-b-1\\c=\dfrac{b^2}{4}-1\end{matrix}\right.\)

\(\Rightarrow\dfrac{b^2}{4}+b=0\)

\(\Rightarrow\left[{}\begin{matrix}b=0\Rightarrow c=-1\\b=-4\Rightarrow c=3\end{matrix}\right.\)

Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=x^2-1\\y=x^2-4x+3\end{matrix}\right.\)

4 tháng 10 2023

loading...  

31 tháng 3 2023

x^5 + 5.x^4.2y + 10.x^3.4y^2 + 10.x^2.8y^3 + 5.x.16y^4 + 32y^5

= x^5 + 10.x^4.y + 40.x^3.y^2 + 80.x^2.y^3 + 80.x.y^4 +32.y^5

10 tháng 4 2017

\(2x^2+y^2-6x+2xy-2y+5=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(x^2+2xy+y^2\right)-\left(2x+2y\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(x+y\right)^2-2\left(x+y\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)

\(\left(x-2\right)^2+\left(x+y-1\right)^2\ge0\forall x,y\)

Suy ra xảy ra khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+y-1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\x+y-1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy pt có nghiệm là \(\left(x;y\right)=\left(2;-1\right)\)

8:

\(=\dfrac{cos10-\sqrt{3}\cdot sin10}{sin10\cdot cos10}=\dfrac{2\left(\dfrac{1}{2}\cdot cos10-\dfrac{\sqrt{3}}{2}\cdot sin10\right)}{sin20}=\dfrac{sin\left(30-10\right)}{sin20}=1\)

10:

\(=\left(2-\sqrt{3}\right)^2+\left(2+\sqrt{3}\right)^2\)

=7-4căn 3+7+4căn 3=14

12:

\(=cos^270^0+\dfrac{1}{2}\left[cos60-cos140\right]\)

\(=cos^270^0+\dfrac{1}{2}\cdot\dfrac{1}{2}-\dfrac{1}{2}\cdot2cos^270^0+\dfrac{1}{.2}\)

=1/4+1/2=3/4