K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (2x+3)(x+5)

\(=2x^2+10x+3x+15\)

\(=2x^2+13x+15\)

b: (x-1)(2x+7)

\(=2x^2+7x-2x-7\)

\(=2x^2+5x-7\)

c: \(\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=8x^3-4x^2+2x+4x^2-2x+1\)

\(=8x^3+1\)

d: \(\left(3x-2\right)\left(9x^2+6x+4\right)\)

\(=27x^3+18x^2+12x-18x^2-12x-8\)

\(=27x^3-8\)

e: 2x(x+1)(x-1)

\(=2x\left(x^2-1\right)\)

\(=2x^3-2x\)

#\(N\)

`a,` Xét Tam giác `MPH` và Tam giác `MQH` có:

`MP = MQ (g``t)`

`MH` chung

\(\widehat{MHP}=\widehat{MHQ}=90^0\)

`=>` Tam giác `MPH =` Tam giác `MQH (ch - cgv)`

`=>`\(\widehat{MPH}=\widehat{MQH}\) `( 2` góc tương ứng `)`

`b,` Vì Tam giác `MPH =` Tam giác `MQH (a)`

`=>` \(\widehat{PMH}=\widehat{QMH}\) `( 2` góc tương ứng `)`

`=> MH` là tia phân giác của \(\widehat{PMQ}\) 

`c,` Ta có: \(\widehat{MPH}=\widehat{MQH}=50^0\) `(CMT)`

Xét Tam giác `MQH` có:

\(\widehat{MHQ}+\widehat{MQH}+\widehat{QMH}=180^0\) `(`đlí tổng `3` góc trong `1` tam giác `)`

\(90^0+50^0+\widehat{QMH}=180^0\)

`->`\(\widehat{QMH}=180^0-90^0-50^0=40^0\)

 

Bài 1:

Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

KA=KH

=>ΔBAK=ΔBHK

=>BA=BH

mà KA=KH

nên BK là trung trực của AH

=>BK vuông góc AH

a: Thể tích của bể cá là: \(100\cdot60\cdot50=3000\cdot100=300000\left(\operatorname{cm}^3\right)\)

b: Thể tích nước ban đầu trong bể là:

\(100\cdot60\cdot30=6000\cdot30=180000\left(\operatorname{cm}^3\right)\)

\(30dm^3=30000\left(\operatorname{cm}^3\right)\)

Thể tích nước sau khi cho thêm hòn đá vào là:

\(180000+30000=210000\left(\operatorname{cm}^3\right)\)

Chiều cao của mực nước là:

210000:100:60=35(cm)

F(x)⋮G(x)

=>\(2x^3-7x^2+12x+a\) ⋮x+2

=>\(2x^3+4x^2-11x^2-22x+34x+68+a-68\) ⋮x+2

=>a-68=0

=>a=68

Bài 1:

a: \(A\left(x\right)=5x^4-7x^2-3x-6x^2+11x-30\)

\(=5x^4-7x^2-6x^2-3x+11x-30\)

\(=5x^4-13x^2+8x-30\)

\(B=-11x^3+5x-10+5x^4-2+20x^3-34x\)

\(=5x^4+20x^3-11x^3+5x-34x-2-10\)

\(=5x^4+9x^3-29x-12\)

b: A(x)+B(x)

\(=5x^4-13x^2+8x-30+5x^4+9x^3-29x-12\)

\(=10x^4-4x^3-21x-42\)

A(x)-B(x)

\(=5x^4-13x^2+8x-30-5x^4-9x^3+29x+12\)

\(=-9x^3-13x^2+37x-18\)

Bài 2:

a: \(M=2x^2+5x-12\)

Bậc là 2

Hệ số cao nhất là 2

Hệ số tự do là -12

b: M+N

\(=2x^2+5x-12+x^2-8x-1=3x^2-3x-13\)

c: P(2x-3)=M

=>\(P=\frac{2x^2+5x-12}{2x-3}=\frac{2x^2-3x+8x-12}{2x-3}\)

\(=\frac{x\left(2x-3\right)+4\left(2x-3\right)}{2x-3}\)

=x+4

13 tháng 10 2021

Bài 1 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{-8}=\frac{x+y}{12+\left(-8\right)}=\frac{-48}{4}=-12.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=-12\\\frac{y}{-8}=-12\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-144\\y=96\end{cases}}\)

b ) Từ \(x\):\(\left(-7\right)\)\(y\)\(10\)

\(\Rightarrow\)\(\frac{x}{-7}=\frac{y}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-7}=\frac{y}{10}=\frac{y-x}{10-\left(-7\right)}=\frac{-34}{17}=-2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-7}=-2\\\frac{y}{10}=-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=14\\y=-20\end{cases}}\)

c ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{-12}=\frac{2x}{30}=\frac{y}{-12}=\frac{2x+y}{30+\left(-12\right)}=\frac{-360}{18}=-20\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=-20\\\frac{y}{-12}=-20\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-300\\y=240\end{cases}}\)

d ) Từ \(2x=-3y\)\(\Rightarrow\)\(\frac{x}{-3}=\frac{y}{2}\)

Áp dugj tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{2}=\frac{x}{-3}=\frac{5y}{10}=\frac{x-5y}{-3-10}=\frac{-130}{-13}=10\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=10\\\frac{y}{2}=10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-30\\y=20\end{cases}}\)

13 tháng 10 2021

Bài 2 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=\frac{x+y-z}{2+\left(-3\right)-5}=\frac{-54}{-6}=9.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{-3}=9\\\frac{z}{5}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=18\\y=-27\\z=45\end{cases}}\)

b ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{-7}=\frac{z}{3}=\frac{x}{4}=\frac{2y}{-14}=\frac{z}{3}=\frac{x+2y-z}{4+\left(-14\right)-3}=\frac{-39}{-13}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=3\\\frac{y}{-7}=3\\\frac{z}{3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=12\\y=-21\\z=9\end{cases}}\)

a: \(5x\left(x-3\right)-x\left(5x+1\right)=16\)

=>\(5x^2-15x-5x^2-x=16\)

=>-16x=16

=>x=-1

b: \(4x\left(x-1\right)+x\left(3-4x\right)=5\)

=>\(4x^2-4x+3x-4x^2=5\)

=>-x=5

=>x=-5

c: \(5\left(x^2+4x-3\right)-x\left(5x+3\right)=19\)

=>\(5x^2+20x-15-5x^2-3x=19\)

=>17x=19+15=34

=>x=2