K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 12 2021

a. Hàm số nghịch biến khi:

\(m+3< 0\Rightarrow m< -3\)

b. Hàm số đồng biến khi:

\(m+3>0\Rightarrow m>-3\)

c. ĐTHS song song với y=-2x+1 khi:

\(\left\{{}\begin{matrix}m+3=-2\\-2\ne1\end{matrix}\right.\) \(\Rightarrow m=-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-2+2}{x-2}+\dfrac{1}{y+1}=3\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{1}{y+1}=2\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x-2}+\dfrac{3}{y+1}=6\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{x-2}=7\\\dfrac{2}{x-2}+\dfrac{1}{y+1}=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=\dfrac{10}{7}\\\dfrac{1}{y+1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{24}{7}\\y=\dfrac{2}{3}\end{matrix}\right.\)

10 tháng 3 2022

Vì \(\sqrt{3\sqrt{2\sqrt{x}}}\) là số nguyên => \(3\sqrt{2\sqrt{x}}\) là số chính phương.

Mà 3 là số nguyên tố nên \(\sqrt{2\sqrt{x}}\)có dạng \(3k^2\) với k ∈ N*

\(\sqrt{2\sqrt{x}}=3k^2\Leftrightarrow2\sqrt{x}=9k^4\Leftrightarrow4x=81k^8\)\(\Leftrightarrow x=\dfrac{81}{4}k^8\)

Vì x là số có 4 chữ số => \(x\le9999\) => \(\dfrac{81}{4}k^8\le9999\Leftrightarrow k^8\le\dfrac{4444}{9}\Leftrightarrow k^8\le493\) (1)

Vì \(k\ge1\) => \(k^8\ge1\) (2)

Từ (1) và (2), ta có \(k^8\in\left\{1,256\right\}\)

-Xét \(k^8=1\Rightarrow k=1\Rightarrow x=\)\(\dfrac{81}{4}\) => Vô lí

-Xét \(k^8=256\Rightarrow k=2\Rightarrow x=5184\) t/m

Vậy x = 5184

10 tháng 3 2022

Anh có thể chỉ em làm bài này bằng cách giải bằng máy tính được không ạ 

20 tháng 12 2022

a: Khi x=4 thì \(A=\dfrac{2-5}{4-2+1}=\dfrac{-3}{3}=-1\)

b: \(B=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-3\sqrt{x}+10}{x-25}\)

\(=\dfrac{2\sqrt{x}+10}{x-25}=\dfrac{2}{\sqrt{x}-5}\)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CB\(\perp\)CA

Ta có: CB\(\perp\)CA

OI\(\perp\)AC

Do đó: OI//CB

b: Xét ΔOAI vuông tại A có AH là đường cao

nên \(OH\cdot OI=OA^2=R^2\)

=>\(OH\cdot OI=OB^2\)

=>OH/OB=OB/OI

Xét ΔOHB và ΔOBI có

\(\dfrac{OH}{OB}=\dfrac{OB}{OI}\)

\(\widehat{HOB}\) chung

Do đó: ΔOHB đồng dạng với ΔOBI

=>\(\widehat{OBH}=\widehat{OIB}\)

11 tháng 1

loading...  

22 tháng 10 2021

\(a,=7\cdot6+15:5=42+3=45\\ b,=6+3\sqrt{5}-6=3\sqrt{5}\)

22 tháng 10 2021

Cảm ơn nhiều nha

b: \(=\dfrac{2}{\sqrt{x}-2}:\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\)

\(=\dfrac{2}{\sqrt{x}-2}\cdot\dfrac{x-4}{2\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

 

10 tháng 12 2023

4: \(x^2-2\left(m+1\right)x+m-4=0\left(1\right)\)

Thay m=1 vào phương trình (1), ta được:

\(x^2-2\cdot\left(1+1\right)x+1-4=0\)

=>\(x^2-4x-3=0\)

=>\(x^2-4x+4-7=0\)

=>\(\left(x-2\right)^2=7\)

=>\(x-2=\pm\sqrt{7}\)

=>\(x=2\pm\sqrt{7}\)

5: Để phương trình (1) có hai nghiệm trái dấu thì \(1\cdot\left(m-4\right)< 0\)

=>m-4<0

=>m<4

6: \(\text{Δ}=\left(-2m-2\right)^2-4\left(m-4\right)\)

\(=4m^2+8m+4-4m+16\)

\(=4m^2+4m+20\)

\(=4m^2+4m+1+19=\left(2m+1\right)^2+19>0\forall m\)

=>Phương trình (1) luôn có hai nghiệm phân biệt

Áp dụng định lí Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=m-4\end{matrix}\right.\)

\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)

\(=\sqrt{4m^2+8m+4-4m+16}\)

\(=\sqrt{4m^2+4m+1+19}\)

\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\forall m\)

Dấu '=' xảy ra khi 2m+1=0

=>2m=-1

=>\(m=-\dfrac{1}{2}\)

Vậy: \(A_{min}=\sqrt{19}\) khi \(m=-\dfrac{1}{2}\)

8 tháng 12 2023

loading...  

Câu 1:

1:

a: \(\dfrac{1}{2}x-3=0\)

=>\(\dfrac{1}{2}x=3\)

=>\(x=3:\dfrac{1}{2}=3\cdot2=6\)

b: \(3x^2-12x=0\)

=>\(3x\cdot x-3x\cdot4=0\)

=>\(3x\left(x-4\right)=0\)

=>x(x-4)=0

=>\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

2: 

a: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=-x+\dfrac{3}{2}\)

=>\(x^2=-2x+3\)

=>\(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Khi x=-3 thì \(y=\dfrac{1}{2}\cdot\left(-3\right)^2=\dfrac{1}{2}\cdot9=4,5\)

Khi x=1 thì \(y=\dfrac{1}{2}\cdot1^2=\dfrac{1}{2}\)

b: Gọi (d1): y=ax+b(a<>0) là phương trình đường thẳng cần tìm

Thay x=2 và y=2 vào (d), ta được:

\(a\cdot2+b=2\)

=>2a+b=2

=>b=2-2a

=>y=ax+2-2a

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=ax+2-2a\)

=>\(\dfrac{1}{2}x^2-ax-2+2a=0\)

\(\text{Δ}=\left(-a\right)^2-4\cdot\dfrac{1}{2}\cdot\left(2a-2\right)\)

\(=a^2-2\left(2a-2\right)=a^2-4a+4=\left(a-2\right)^2\)

Để (P) tiếp xúc với (d1) thì Δ=0

=>a-2=0

=>a=2

=>b=2-2a=2-4=-2

Vậy: Phương trình đường thẳng cần tìm là y=2x-2