K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 11 2021

1.1

Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:

\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

b.

Pt có nghiệm kép khi:

\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)

NV
19 tháng 3 2022

2.

Áp dụng định lý hàm cosin:

\(b=\sqrt{a^2+c^2-2ac.cosB}=\sqrt{8^2+3^2-2.8.3.cos60^0}=7\)

\(S_{ABC}=\dfrac{1}{2}ac.sinB=\dfrac{1}{2}.8.3.sin60^0=6\sqrt{3}\)

4.

\(\Delta=\left(m+2\right)^2-16>0\Leftrightarrow m^2+4m-12>0\Rightarrow\left[{}\begin{matrix}m>2\\m< -6\end{matrix}\right.\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m-2\\x_1x_2=4\end{matrix}\right.\)

\(x_1+x_2+x_1x_2>1\)

\(\Leftrightarrow-m-2+4>1\)

\(\Rightarrow m< 1\) (2)

Kết hợp (1); (2) ta được \(m< -6\)

1: (x-1)^2+(y+2)^2=25

=>R=5; I(1;-2)

2: Δ'//Δ nên Δ': 3x-4y+c=0

d(I;Δ')=5

=>\(\dfrac{ \left|3\cdot1+\left(-2\right)\cdot\left(-4\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=5\)

=>|c+11|=25

=>c=14 hoặc c=-36

=>3x-4y+14=0 hoặc 3x-4y-36=0

3x-4y+14=0 

=>VTPT là (3;-4) và (Δ') đi qua A(2;5)

=>VTCP là (4;3)

=>PTTS là x=2+4t và y=5+3t

3x-4y-36=0

=>VTPT là (3;-4) và (Δ') đi qua B(0;-9)

=>VTCP là (4;3)

PTTS là x=0+4t và y=-9+3t

 

1: vecto AC=(-2;2)

=>VTCP là (-2;2); vtpt là (2;2)

2: vecto AB=(-10;-2)=(5;1)

=>VTPT của Δ là (5;1)

vtcp của Δ là (-1;5)

NV
6 tháng 3 2023

\(\overrightarrow{AC}=\left(-2;2\right)=2\left(-1;1\right)\) nên đường thẳng AC nhận \(\left(-1;1\right)\) là 1 vtcp và \(\left(1;1\right)\) là 1 vtpt

b.

\(\overrightarrow{BA}=\left(10;2\right)=2\left(5;1\right)\) ; mà \(\Delta\perp AB\) nên \(\Delta\) nhận (5;1) là 1 vtpt và \(\left(1;-5\right)\) là 1 vtcp

29 tháng 4 2023

1, VTCP \(\overrightarrow{AC}=\left(-2;2\right)\); A(4;3)

PTTS : \(\left\{{}\begin{matrix}x=4+2t\\y=3-2t\end{matrix}\right.\)( t là tham số ) 

VTPT ( -2;-2) ; A(4;3) 

PTTQ : \(-2\left(x-4\right)-2\left(y-3\right)=0\Leftrightarrow-2x-2y+14=0\Leftrightarrow x+y-7=0\)

2, AB :  \(VTCP\overrightarrow{AB}=\left(-10;-2\right)\)

Do delta vuông góc với AB nên VTCP AB là VTPT đt delta 

delta \(-10\left(x-2\right)-2\left(y-5\right)=0\Leftrightarrow-10x-2y+30=0\Leftrightarrow5x+y-15=0\)

3, pt đường tròn có dạng  \(\left(x+6\right)^2+\left(y-1\right)^2=R^2\)

do pt (C1) thuộc A nên \(\left(4+6\right)^2+\left(3-1\right)^2=R^2\Leftrightarrow104=R^2\)

=> \(\left(C1\right):\left(x+6\right)^2+\left(y-1\right)^2=104\)

4, tâm \(I\left(3;4\right)\)

\(R=\dfrac{AC}{2}=\dfrac{\sqrt{4+4}}{2}=\dfrac{\sqrt{8}}{2}\Rightarrow R^2=2\)

\(\left(C2\right):\left(x-3\right)^2+\left(y-4\right)^2=2\)

 

1 tháng 5 2021

1.

undefined

NV
20 tháng 1 2022

Do ABCD là hình thoi \(\Rightarrow\overrightarrow{AD}=\overrightarrow{BC}\), do M là trung điểm AB \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\)

Do đó:

\(\overrightarrow{MA}+\overrightarrow{MD}+2\overrightarrow{MC}=\overrightarrow{MA}+\left(\overrightarrow{MA}+\overrightarrow{AD}\right)+2\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(=2\left(\overrightarrow{MA}+\overrightarrow{MB}\right)+\overrightarrow{AD}+2\overrightarrow{BC}=\overrightarrow{BC}+2\overrightarrow{BC}=3\overrightarrow{BC}\)