
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bài 2: a. ta có góc ADE = góc ABC (= 45 độ)
mà 2 góc này ở vị trí đồng vị
⇒ DE // BC
b. ta có góc FEC = góc ECB
mà 2 góc này ở vị trí so le trong
⇒ EF // BC
c. vì DE // BC và EF // BC nên DE ≡ EF
⇒ 3 điểm D,E,F thẳng hàng
bài 3:
a. ta có góc CHK = góc CAB = 90 độ
mà 2 góc này ở vị trí đồng vị
⇒ KH // AB
b. ta có góc IKB = góc KBA = 60 độ
mà 2 góc này ở vị trí so le trong
⇒ KI // AB
c. vì KH // AB và KI // AB nên KH ≡ KI
⇒ 3 điểm H,K,I thẳng hàng

Bài 6: Số học sinh giỏi là \(48\cdot\frac16=8\) (bạn)
Số học sinh trung bình là \(48\cdot25\%=12\) (bạn)
Số học sinh khá là 48-8-12=40-12=28(bạn)
Bài 5:
Thể tích xăng còn lại chiếm:
\(100\%-\frac{3}{10}-40\%=60\%-30\%=30\%\) (tổng số xăng)
Thể tích xăng còn lại là:
\(60\cdot30\%=18\left(lít\right)\)


Bài 3:
a: \(\frac{31}{15}>1;\frac{15}{31}<1\)
Do đó: \(\frac{31}{15}>\frac{15}{31}\)
=>\(\left(\frac{31}{15}\right)^{11}>\left(\frac{15}{31}\right)^{11}\)
b: \(\frac89<1\)
=>\(\left(\frac89\right)^{23}>\left(\frac89\right)^{25}\)
=>\(-\left(\frac89\right)^{23}<-\left(\frac89\right)^{25}\)
=>\(\left(-\frac89\right)^{23}<\left(-\frac89\right)^{25}\)
c: \(27^{40}=\left(27^2\right)^{20}=729^{20}\)
\(64^{60}=\left(64^3\right)^{20}=262144^{20}\)
mà 729<262144
nên \(27^{40}<64^{60}\)
Bài 2:
a: \(A=\frac{1}{10}-\frac{1}{10\cdot9}-\frac{1}{9\cdot8}-\cdots-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
\(=\frac{1}{10}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{9\cdot10}\right)\)
\(=\frac{1}{10}-\left(1-\frac12+\frac12-\frac13+\cdots+\frac19-\frac{1}{10}\right)\)
\(=\frac{1}{10}-\left(1-\frac{1}{10}\right)=\frac{1}{10}-\frac{9}{10}=-\frac{8}{10}=-\frac45\)
b: \(B=\frac13+\frac{1}{3^2}+\cdots+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
=>\(3B=1+\frac13+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
=>\(3B-B=1+\frac13+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac13-\frac{1}{3^2}-\cdots-\frac{1}{3^{100}}\)
=>\(2B=1-\frac{1}{3^{100}}=\frac{3^{100}-1}{3^{100}}\)
=>\(B=\frac{3^{100}-1}{2\cdot3^{100}}\)

Bài 2:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
ta có: BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-125^0=55^0\)
Ta có: BD//Cz
=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)
=>\(\hat{DBC}=180^0-130^0=50^0\)
Ta có: tia BD nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)
=>\(\hat{ABC}=55^0+50^0=105^0\)
Bài 3:
Ax//yy'
=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)
=>\(\hat{yBA}=50^0\)
Cz//yy'
=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)
=>\(\hat{yBC}=40^0\)
Ta có: tia By nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)
Bài 4:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-110^0=70^0\)
ta có; tia BD nằm giữa hai tia BA và BC
=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)
=>\(\hat{DBC}=100^0-70^0=30^0\)
Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//Cz
Ta có: BD//Ax
BD//Cz
Do đó: Ax//Cz

a: a//b
=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)
mà \(\hat{A_1}=65^0\)
nên \(\hat{B_3}=65^0\)
b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)
=>\(\hat{B_2}=180^0-65^0=115^0\)
Giải:
a; \(\hat{A_1}\) = \(65^0\) (gt)
\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)
\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)
b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)
\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)
Vậy a; \(\hat{B}_3\) = 65\(^0\)
b; \(\hat{B_2}\) = 115\(^0\)

3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau

Bài 14:
\(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)
\(A\left(x\right)-B\left(x\right)=3x^4+7x^2+8x+2\)
Do đó: \(A\left(x\right)+B\left(x\right)+A\left(x\right)-B\left(x\right)=5x^4-6x^3-3x^2-4+3x^4+7x^2+8x+2\)
=>\(2\cdot A\left(x\right)=8x^4-6x^3+4x^2+8x-2\)
=>\(A\left(x\right)=4x^4-3x^3+2x^2+4x-1\)
Ta có: \(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)
=>\(B\left(x\right)=5x^4-6x^3-3x^2-4-4x^4+3x^3-2x^2-4x-1\)
=>\(B\left(x\right)=x^4-3x^3-5x^2-4x-5\)
Bài 13:
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)
Do đó: \(f\left(x\right)+g\left(x\right)+f\left(x\right)-g\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\)
=>\(2\cdot f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)
=>\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
=>\(g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-4x+7=x^4+3x^3-5x^2-4x+2\)
Bài nào vậy ???
đề đâu