K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

Đáp án C

Hi, mình bày bạn cách bấm máy tính nhé.

- Trước tiên bạn xác định đề bài, điều kiện x nằm ở đâu. Bạn chọn 1 số bất kì trong khoảng x thuộc. (Ở đây mình chọn x=3)

- Tiếp theo bạn phải hiểu được f(x) là đạo hàm của 1 trong 4 đáp án. Nghĩa là, khi bạn đạo hàm 1 trong 4 đáp án bạn sẽ nhận được f(x)

- Tiếp theo bạn nhập hàm f(x) vào máy tính, bấm CALC, gán cho x=3, bạn sẽ nhận được f(3)=6

- Tiếp tục, bạn nhập lần lượt đạo hàm của các đáp án A,B,C,D vào và cho x=3. Bạn dò xem 1 trong 4 đáp án đó, cái nào thỏa được bằng 6 thì đó là nguyên hàm của f(x). (Ở đây mình nhận được đáp án C có giá trị bằng 6 khi x=3) 

 

29 tháng 12 2021

Mình cảm ơn cái này thầy mình chưa có dậy qua ý nên kbt làm như thế nào huhu cảm ơn cậu nhiều ạ

NV
16 tháng 8 2021

Nhìn hình minh họa thì rõ ràng họ hướng ngay đến cách giải sử dụng tọa độ hóa nên chúng ta đi theo hướng đó:

Đặt hệ trục tọa độ Oxyz vào lập phương như hình vẽ và quy ước a bằng 1 đơn vị độ dài

Ta có các tọa độ điểm: \(A\left(0;0;1\right)\) ; \(B\left(1;0;1\right)\)\(B'\left(1;0;0\right)\)\(C'\left(1;1;0\right)\)

\(\Rightarrow\overrightarrow{AB'}=\left(1;0;-1\right)\)\(\overrightarrow{BC'}=\left(0;1;-1\right)\) ; \(\overrightarrow{AB}=\left(1;0;0\right)\)

\(\Rightarrow\left[\overrightarrow{AB'};\overrightarrow{BC'}\right]=\left(1;1;1\right)\)

Áp dụng công thức k/c giữa 2 đường thẳng chéo nhau:

\(d\left(AB';BC'\right)=\dfrac{\left|\left[\overrightarrow{AB'};\overrightarrow{BC'}\right].\overrightarrow{AB}\right|}{\left|\left[\overrightarrow{AB'};\overrightarrow{BC'}\right]\right|}=\dfrac{\left|1.1+1.0+1.0\right|}{\sqrt{1^2+1^2+1^2}}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

Do quy ước mỗi đơn vị độ dài là a nên k/c cần tìm là: \(\dfrac{a\sqrt{3}}{3}\)

Chọn B

4 tháng 7 2016

nhờ người ta giải mà cười hihi

em thì bó tay chấm chữ com vào ăn

4 tháng 7 2016

TXĐ: D=R

\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)

\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)

Đặt t = \(3^{x^2+x-1}\)      (t>0)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)

 

c: \(12\cdot3^x+3\cdot15^x-5^{x+1}=20\)

=>\(12\cdot3^x+3\cdot3^x\cdot5^x-5^x\cdot5-20=0\)

=>\(3^x\cdot3\left(5^x+4\right)-5\left(5^x+4\right)=0\)

=>\(\left(3^{x+1}-5\right)\left(5^x+4\right)=0\)

=>\(3^{x+1}-5=0\)

=>\(3^{x+1}=5\)

=>\(x+1=log_35\)

=>\(x=log_35-1\)

f: \(25^x-2\left(3-x\right)\cdot5^x+2x-7=0\)

=>\(\left(5^x\right)^2+5^x\cdot\left(2x-6\right)+2x-7=0\)

=>\(\left(5^x\right)^2+5^x\left(2x-7\right)+5^x+2x-7=0\)

=>\(5^x\left(5^x+2x-7\right)+\left(5^x+2x-7\right)=0\)

=>\(\left(5^x+1\right)\left(5^x+2x-7\right)=0\)

=>\(5^x+2x-7=0\)

Đặt \(A\left(x\right)=5^x+2x-7\)

=>\(A'\left(x\right)=5^x\cdot ln5+2>0\forall x\)

=>A(x) đồng biến trên R

=>A(x)=0 khi và chỉ khi x=1

i: \(9^x+2\left(x-2\right)\cdot3^x+2x-5=0\)

=>\(\left(3^x\right)^2+3^x\left(2x-5\right)+3^x+2x-5=0\)

=>\(\left(3^x+2x-5\right)\left(3^x+1\right)=0\)

=>\(3^x+2x-5=0\)

Đặt \(B\left(x\right)=3^x+2x-5\)

=>\(B'\left(x\right)=3^x\cdot ln3+2>0\)

=>B(x) luôn đồng biến trên R

=>B(x)=0 khi và chỉ khi x=1

10 tháng 2 2022

Ta có: \(\int\dfrac{xdx}{x^2+3}\)

Đặt \(u=x^2+3\left(u>0\right)\) 

Có \(du=2xdx\)

\(\Rightarrow\int\dfrac{xdx}{x^2+3}=\)\(\int\dfrac{du}{2u}=\dfrac{1}{2}ln\left(u\right)=\dfrac{1}{2}ln\left(x^2+3\right)\)

10 tháng 2 2022

Cảm ơn bạn nhiều 🥰

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Lời giải:

\(\lim\limits_{x\to 2-}y=\lim\limits_{x\to 2-}\frac{\sqrt{4-x^2}}{(x-2)(x-3)}=\lim\limits_{x\to 2-}\frac{\sqrt{2+x}}{\sqrt{2-x}(x-3)}=-\infty \) nên $x=2$ là TCĐ 

Vì \(x\in [-2;2)\) nên không tồn tại \(\lim\limits_{x\to +\infty }y\) nên đths không có TCN 

Còn $x=3$ không thể là TCĐ vì tại $x=3$ thì $\sqrt{4-x^2}$ không tồn tại .

 

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Đáp án A

NV
11 tháng 8 2021

\(y'=-3mx^2+2x-3\)

Hàm nghịch biến trên khoảng đã cho khi với mọi \(x\in\left(-3;0\right)\) ta có:

\(-3mx^2+2x-3\le0\)

\(\Leftrightarrow2x-3\le3mx^2\)

\(\Leftrightarrow\dfrac{2x-3}{3x^2}\le m\)

\(\Rightarrow m\ge\max\limits_{\left(-3;0\right)}\left(\dfrac{2x-3}{3x^2}\right)\)

Xét hàm \(f\left(x\right)=\dfrac{2x-3}{3x^2}\Rightarrow f'\left(x\right)=\dfrac{2\left(3-x\right)}{3x^3}< 0;\forall x\in\left(-3;0\right)\)

\(\Rightarrow f\left(x\right)>f\left(-3\right)=-\dfrac{1}{3}\)

\(\Rightarrow m\ge-\dfrac{1}{3}\)

CHọn B