Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)
\(\dfrac{3x^2+ax^2+x+a}{x+1}\)
\(=\dfrac{3x^2+3x+ax^2+ax-\left(a+2\right)x-\left(a+2\right)+a+2}{x+1}\)
\(=3x+ax-a-2+\dfrac{a+2}{x+1}\)
Để đây là phép chia hết thì a+2=0
hay a=-2
a, \(\dfrac{3x-2}{3}-1>0\Leftrightarrow\dfrac{3x-5}{3}>0\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{5}{3}\\x\ne\dfrac{5}{3}\end{matrix}\right.\)
b, \(\dfrac{4x-1}{2}-\dfrac{2x-3}{5}< 0\Leftrightarrow\dfrac{20x-5-4x+6}{10}< 0\Leftrightarrow\left\{{}\begin{matrix}x< -\dfrac{1}{16}\\x\ne-\dfrac{1}{16}\end{matrix}\right.\)
=xy.(xy+5)-1.(xy+5)
=xy.xy+xy.5+(-1).xy+(-1).5
=x^2y^2+5xy-1xy-5
(xy-1)(xy+5)=(xy.xy)+(5.xy)+(-1.xy)+(-1.5)=x^2y^2+5xy-xy-5=x^2y^2-4xy-5
`A=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2)`
`=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x`
`=(x^4-x^4)+(x^3-x^3)+(3x^2-x^2-2x^2)+(2x-2x)+2`
`=2`
c,\(\dfrac{5-x}{2}-\dfrac{3x+4}{3}=\dfrac{1}{4}\)
⇔\(\dfrac{5-x}{2}+\dfrac{-3x-4}{3}=\dfrac{1}{4}\)
⇔\(\dfrac{6\left(5-x\right)}{12}+\dfrac{4\left(-3x-4\right)}{12}=\dfrac{3}{12}\)
⇔6(5-x)+4(-3x-4)=3
⇔ 30-6x-12x-16=3
⇔ 30-16-3=12x+6x
⇔ 11=18x
⇔ x=\(\dfrac{11}{18}\)
Vậy S=\(\left\{\dfrac{11}{18}\right\}\)
d)x2-5x=9(x-5)
⇔x(x-5)=9(x-5)
⇔x(x-5)-9(x-5)=0
⇔(x-9)(x-5)=0
⇔\(\left\{{}\begin{matrix}x-9=0\Leftrightarrow x=9\\x-5=0\Leftrightarrow x=5\end{matrix}\right.\)
Vậy S=\(\left\{5;9\right\}\)