Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Rút gọn được A = ( k 3 – 64) – (128 + k 3 ) = -192.
b) Rút gọn được B = -19 m 3 + 35 n 3 .
Bài 1:
a: Ta có: \(A=\left(k-4\right)\left(k^2+4k+16\right)-\left(k^3+128\right)\)
\(=k^3-64-k^3-128\)
=-192
b: Ta có: \(B=\left(2m+3n\right)\left(4m^2-6mn+9n^2\right)-\left(3m-2n\right)\left(9m^2+6mn+4n^2\right)\)
\(=8m^3+27n^3-27m^3+8n^3\)
\(=-19m^3+35n^3\)
Bài 4:
a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)
\(\Leftrightarrow9x=9\)
hay x=1
b: ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x=15\)
\(\Leftrightarrow2x=7\)
hay \(x=\dfrac{7}{2}\)
a) C = c + d + 2 ( c − d ) 3 = ( 3 c − d ) 3 .
b) D = m − n ( n + p ) 3 = ( m − 2 n − p ) 3 .
\(x^2-x-6=x^2-3x+2x-6=x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(x+2\right)\)
\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)\(x^3-19x-30=\left(x^3+8\right)-\left(19x-38\right)=\left(x+2\right)\left(x^2-2x+4\right)-19\left(x+2\right)=\left(x+2\right)\left(x^2-2x-15\right)=\left(x+2\right)\left(x^2-5x+3x-15\right)=\left(x+2\right)\left(x-5\right)\left(x+3\right)\)
\(x^4+4x^2-5=x^4+4x^2+4-9=\left(x^2+2\right)^2-9=\left(x^2+5\right)\left(x^2-1\right)=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(x^3-7x-6=0\Leftrightarrow\left(x^3+1\right)-\left(7x+7\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-3x+2x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=-1\end{matrix}\right.\)
\(x^3-3x^2-16x+48=x^2\left(x-3\right)-16\left(x-3\right)=\left(x^2-16\right)\left(x-3\right)=\left(x-4\right)\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-4\end{matrix}\right.\)
\(1,\)
\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)
Với \(n=k+1\)
\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)
Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)
Theo pp quy nạp ta được đpcm
\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)
Với \(n=k+1\)
\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)
Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)
Theo pp quy nạp ta được đpcm
\(1,\)
\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)
Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)
\(d,D=1^n+2^n+5^n+8^n\)
Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)
a)
\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)
\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)
\(\Leftrightarrow2004-x=0\) (vì \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\))
\(\Leftrightarrow x=2004\)
S={2004}
Bài 2 :
\(4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(9m^2+n^2-6mn=\left(3m-n\right)^2\)
\(16a^2+25b^2+40ab=\left(4a+5b\right)^2\)
\(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
Bài 1:
a, ( 3 + xy2)2 = 32 + 2. 3. xy2 + (xy2)2 = 9+ 6xy2 + x2y4.
b, (10- 2m2n) = 102 - 2.10.2m2n + (2m2n)2 = 100 - 40m2n + 4m4n
c, ( a - b2)(a+b2) = bạn xem lại đề câu này nhé!
Bài 2:
a, 4x2 + 4xy + y2 = (2x)2 + 2. 2x. y + y2 = ( 2x + y)2
b, 9m2 + n2 - 6mn = ( 3m)2 - 2. 3m. n + n2 = ( 3m - n)2
c,16a2 + 25b2 +40ab = (4a)2 + 2. 4a. 5b + (5b)2 = ( 4a + 5b) 2
d, x2 - x +1/4 = x2 - 2. 1/2. x +(1/2)2 = (x - 1/2)2
Đề bài là j vậy bạn???