K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

đkxđ : x khác 7 , x khác 5/2

\(\Leftrightarrow\dfrac{\left(3x-2\right)\left(2x-5\right)}{\left(x-7\right)\left(2x-5\right)}-\dfrac{\left(6x+1\right)\left(x-7\right)}{\left(2x-5\right)\left(x-7\right)}=0\)

<=> \(\dfrac{6x^2-15x-4x+10}{....}-\dfrac{6x^2-42x+x-7}{...}=0\)

<=> \(6x^2-19x+10-6x^2+41x+7=0\)

<=> 22x + 17 =0

<=> \(x=-\dfrac{17}{22}\) (tm)

Vậy..

12 tháng 4 2022

undefined

19 tháng 12 2023

a: \(VP=a^3+b^3+c^3-3bac\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VT\)

b: \(VT=\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)\)

\(=3a^2+15a+2ab+10b-a-5-2ab+4b\)

\(=3a^2+14a+14b-5\)

\(VP=\left(3a+5\right)\left(a+3\right)+2\left(7b-10\right)\)

\(=3a^2+9a+5a+15+14b-20\)

\(=3a^2+14a+14b-5\)

=>VT=VP

c: \(VT=a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-ax+ax+bx\)

\(=ab+bx=b\left(a+x\right)=VP\)

d: \(VT=a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\)

\(=ab-ac-ab-bc+ca-cb\)

\(=-2bc\)

=VP

AH
Akai Haruma
Giáo viên
2 tháng 1

Lời giải:
a. Xét tứ giác $ADHE$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên tứ giác $ADHE$ là hình chữ nhật.

b.

Xét tam giác vuông $BDH$ vuông tại $D$ có $DI$ là đường trung tuyến ứng với cạnh huyền $BH$ nên $DI=\frac{BH}{2}=IH$

$\Rightarrow DIH$ là tam giác vuông tại $I$

$\Rightarrow \widehat{IDH}=\widehat{IHD}$ (1)

$ADHE$ là hình chữ nhật nên $\widehat{HDE}=\widehat{HAE}=\widehat{HAC}$ (2)

Từ $(1); (2)\Rightarrow \widehat{IDH}+\widehat{HDE}=\widehat{IHD}+\widehat{HAC}$

$\Rightarrow \widehat{IDE}=\widehat{IHD}+\widehat{HAC}$.

Mà $\widehat{IHD}=\widehat{HCA}$ (2 góc đồng vị)

$\Rightarrow \widehat{IDE}=\widehat{HCA}+\widehat{HAC}=180^0-\widehat{AHC}=180^0-90^0=90^0$

$\Rightarrow DI\perp DE$

c. Tương tự phần a ta suy ra $DE\perp EK$

Vậy $DI\perp DE, EK\perp DE$

$\Rightarrow DI\parallel EK$ và $DI, EK$ cùng vuông góc với $DE$

$\Rightarrow DIKE$ là hình thang vuông.

d.

Có: $DI=\frac{BH}{2}\Rightarrow BH=2DI=2.1=2$ (cm) 

$EK=\frac{CH}{2}\Rightarrow CH=2EK=8$ (cm)

$\Rightarrow BC=BH+CH=2+8=10$ (cm)

$S_{ABC}=AH.BC:2=6.10:2=30$ (cm2)

AH
Akai Haruma
Giáo viên
2 tháng 1

Hình vẽ:

21 tháng 11 2023

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔHAC~ΔABC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>BC=25

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH\cdot25=15^2=225\\AH\cdot25=15\cdot20=300\end{matrix}\right.\)

=>BH=9; AH=12

 

15 tháng 9 2021

undefined

a: góc AEH=góc ADH=góc DAE=90 độ

=>AEHD là hcn

b: XétΔAEH vuông tại E và ΔAHC vuông tại H có

góc EAH chung

=>ΔAEH đồng dạng với ΔAHC

c: ΔAHC vuông tại H có HE là đường cao

nên HE^2=AE*EC

31 tháng 8 2021

Bài 1

a) góc B=góc C=70 độ(gt)

=>AB//DC(đồng vị)

=> ABCD là hình thang

b)góc M+ góc Q=90 độ +90 độ=180 độ

=>MN//QP( hai góc trong cùng phía bù nhau)

=>MNPQ là hình thang 

c)góc E= góc F=65 độ

=>DE//CF( slt)

=> DCFE là hình thang

 

31 tháng 8 2021

Tham Khaor

Bài 1

a) góc B=góc C=70 độ(gt)

=>AB//DC(đồng vị)

=> ABCD là hình thang

b)góc M+ góc Q=90 độ +90 độ=180 độ

=>MN//QP( hai góc trong cùng phía bù nhau)

=>MNPQ là hình thang 

c)góc E= góc F=65 độ

=>DE//CF( slt)

=> DCFE là hình thang

20 tháng 12 2021

Bài 4: 

b: Ta có: ΔAHC vuông tại H

mà HI là đường trung tuyến

nên IH=IC

hay ΔIHC cân tại I