Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)
\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)
do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))
\(\Rightarrow x=\frac{k^2-2}{4}\)
do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)
=> ko tồn tại cặp số nguyên dương x,y tmđkđb
b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
HC=3,2(cm)
BÀI 1. Giải các phương trình sau bằng công thức nghiệm hoặc (công thức nghiện thu gọn).
1) x2 - 11x + 38 = 0 ;
2) 6x2 + 71x + 175 = 0 ;
3) 5x2 - 6x + 27 =0 ;
4) - 30x2 + 30x - 7,5 = 0 ;
5) 4x2 - 16x + 17 = 0 ;
6) x2 + 4x - 12 = 0 ;
Khi b chẵn thì nên dùng delta phẩy
Còn lại thì dùng delta
\(PT\Leftrightarrow9x^2+16x+96=9x^2+256y^2+576-96xy+768y-144x.\)
\(\Leftrightarrow256y^2-160x-96xy+768y+480=0\)
\(\Leftrightarrow8y^2-5x-3xy+24y+15=0\)
Đến chỗ này phân tích kiểu j được nhỉ
9:Chứng minh cho bốn đỉnh của tứ giác cách đều một điểm nào đó
Chứng minh tứ giác có tổng 2 góc đối bằng 180°
Chứng minh từ hai đỉnh cùng kề một cạnh cùng nhìn một cạnh dưới hai góc bằng nhau. Nếu một tứ giác có tổng số đo hai góc đối bằng thì tứ giác đó nội tiếp được trong một đường tròn.
a: \(2x^2-7x+3=0\)
=>\(2x^2-6x-x+3=0\)
=>\(2x\left(x-3\right)-\left(x-3\right)=0\)
=>(x-3)(2x-1)=0
=>\(\left[{}\begin{matrix}x-3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
b: \(6x^2+x+5=0\)
\(\text{Δ}=1^2-4\cdot6\cdot5=1-24\cdot5=1-120=-119< 0\)
=>Phương trình vô nghiệm
c: \(6x^2+x-5=0\)
=>\(6x^2+6x-5x-5=0\)
=>6x(x+1)-5(x+1)=0
=>(x+1)(6x-5)=0
=>\(\left[{}\begin{matrix}x+1=0\\6x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{6}\end{matrix}\right.\)
d: \(3x^2+5x+2=0\)
=>\(3x^2+3x+2x+2=0\)
=>3x(x+1)+2(x+1)=0
=>(x+1)(3x+2)=0
=>\(\left[{}\begin{matrix}x+1=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
e: \(y^2-8y+16=0\)
=>\(\left(y-4\right)^2=0\)
=>y-4=0
=>y=4
f: \(16z^2+24z+9=0\)
=>\(\left(4z\right)^2+2\cdot4z\cdot3+3^2=0\)
=>\(\left(4z+3\right)^2=0\)
=>4z+3=0
=>4z=-3
=>\(z=-\dfrac{3}{4}\)