Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
Ta có: a - b = ab => a = ab + b = b(a + 1)
Thay a = b(a + 1) vào a - b = a : b ta có: \(a-b=\frac{b\left(a+1\right)}{b}=a+1\)
=> a - b = a + 1 => a - a - b = 1 => -b = 1 => b = -1
Lại có: ab = a - b
<=> a x (-1) = a - (-1) <=> -a = a + 1 <=> -a - a = 1 <=> -2a = 1 <=> a = -1/2
Vậy...
B2:
a, \(3y\left(y-\frac{2}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3y=0\\y-\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=\frac{2}{5}\end{cases}}}\)
b, \(7\left(y-1\right)+2y\left(y-1\right)=0\)
\(\Rightarrow\left(y-1\right)\left(7+2y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\7+2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\2y=7\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\y=\frac{7}{2}\end{cases}}\)
B3: \(K=\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}\)
\(K=\left(-\frac{2}{3}+\frac{1}{6}\right)+\left(\frac{3}{4}-\frac{2}{5}\right)\)
\(K=\left(\frac{-4}{6}+\frac{1}{6}\right)+\left(\frac{15}{20}-\frac{8}{20}\right)\)
\(K=\frac{-1}{2}+\frac{7}{20}=\frac{-10}{20}+\frac{7}{20}=\frac{-3}{20}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\) khi 2 thừa số trái dấu
TH1: \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Leftrightarrow}-1< x< 2\left(chon\right)}\)
TH2: \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Leftrightarrow}2< x< -1\left(loai\right)}\)
Vậy \(-1< x< 2\)( tự tìm x )
b) \(\left(x-1\right)\left(x+3\right)>0\)khi 2 thừa số cùng dấu
TH1: \(\hept{\begin{cases}x-1>0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-3\end{cases}\Leftrightarrow}x>1}\)
TH2: \(\hept{\begin{cases}x-1< 0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -3\end{cases}\Leftrightarrow}x< -3}\)
Vậy hoặc x > 1 hoặc x < -3 thì thỏa mãn
BT1: 20152014 có tận cùng là 5
20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4
=> 20152014-20142015 có tận cùng là ...5-...4=...1
BT2: f(1)=a.1+b=1 (1)
f(2)=a.2+b=4 (2)
Trừ (2) cho (1) => a=3
Thay a=3 vào (1) => b=-2
ĐS: a=3; b=-2
a) \(\hept{\begin{cases}f\left(2\right)=156\\f\left(-3\right)=156\\f\left(-1\right)=132\end{cases}\Rightarrow\hept{\begin{cases}4a+2b+c=156\\9a-3b+c=156\\a-b+c=132\end{cases}\Rightarrow}\hept{\begin{cases}4a+2b+132-a+b=156\\9a-3b+132-a+b=156\\c=132-a+b\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}3a+3b=24\\8a-2b=24\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a+b=8\\-4a+b=-12\\c=132-a+b\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}5a=20\\b=8-a\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a=4\\b=4\\c=132\end{cases}}}\)
b) \(f\left(x\right)=4x^2+4x+132=4x^2+2x+2x+1+131=2x\left(2x+1\right)+\left(2x+1\right)+131\)
\(=\left(2x+1\right)^2+131\)
\(\left(2x+1\right)^2\ge0\forall x\Rightarrow f\left(x\right)\ge131\forall x\). Vậy \(f\left(x\right)\ne0\forall x\)
Ta có : \(a-b=ab\Rightarrow a=ab+b=b(a+1)\)
\(a:b=b(a+1):b=a+1\)
\(\Rightarrow a-b=a+1\Rightarrow b=-1\)
\(a=(-1)(a+1)\Rightarrow a=-a-1\Rightarrow2a=-1\Rightarrow a=-\frac{1}{2}\)
Vậy : ...