Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=x-4+\frac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=x-4+\frac{x-4}{x-4}\)
\(=x-4+1\)
\(=x-3\)
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=x-4+\frac{x-4}{\sqrt{\left(x+4\right)^2}}\)
\(=x-4+\frac{x-4}{x-4}\)
\(=x-4+1\)
= x - 3
A=\(\sqrt{\left(\sqrt{7}-2\right)^2}\)+\(\frac{25\sqrt{7}-63}{3\sqrt{7}-7}\)=\(\frac{12\sqrt{7}-28}{3\sqrt{7}-7}\)=4
Bài 1:
\(A=\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2=2\sqrt{2}-2\sqrt{2}+2\sqrt{5}-2\sqrt{5}-2=-2\)\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Bn vào Link này tham khảo nhé bn
Rút gọn biểu thức: √[x + 4√(x - 4)] + √[x - 4√(x - 4)] - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
# MissyGirl #
Giải giùm mình ạ, đừng đưa link nha😅