K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

bạn viết rõ ràng ra được ko

mình sẽ giúp bạn

1 tháng 4 2018

căn  3x-5 + căn 7-3x = 9x mũ 2 -36+38

20 tháng 5 2023

`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12`     `ĐK: x >= 0`

`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`

`<=>12\sqrt{3x}=12`

`<=>\sqrt{3x}=1`

`<=>3x=1<=>x=1/3` (t/m)

`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36`   `ĐK: x >= -1`

`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`

`<=>12\sqrt{x+1}=36`

`<=>\sqrt{x+1}=3`

`<=>x+1=9`

`<=>x=8` (t/m)

2 tháng 8 2017

Ta có hệ \(\hept{\begin{cases}x^2+y^2-3x+4y=1\\3x^2-2y^2-9x-8y=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+3y^2-9x+12y=3\left(1\right)\\3x^2-2y^2-9x-8y=3\left(2\right)\end{cases}}}\)

Lấy (1)-(2) ta có \(5y^2+20y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-4\end{cases}}\)

Với \(y=0\Rightarrow x^2-3x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}\)

Với \(y=-4\Rightarrow x^2-3x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}\)

Vậy hệ có 4 nghiệm \(\left(x;y\right)=\left(0;\frac{3+\sqrt{13}}{2}\right);\left(0;\frac{3-\sqrt{13}}{2}\right);\left(-4;\frac{3+\sqrt{13}}{2}\right);\left(-4;\frac{3-\sqrt{13}}{2}\right)\)

10 tháng 7 2021

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} 7(2x^3+3x^2y)=35\\ 5(y^3+6xy^2)=35\end{matrix}\right.\Rightarrow 14x^3+21x^2y-5y^3-30xy^2=0(1)\)

Nhận thấy $x,y\neq 0$ nên đặt \(x=ty(t\neq 0)\). Thay vào $(1)$ ta được:

\(14t^3y^3+21t^2y^3-5y^3-30ty^3=0\)

\(\Leftrightarrow 14t^3+21t^2-30t-5=0\Leftrightarrow (t-1)(14t^2+35t+5)=0\)

Nếu \(t=1\Rightarrow x=y\rightarrow 7y^3=7\Rightarrow y=1\rightarrow x=1\)

Nếu \(14t^2+35t+5=0\Rightarrow \left[ \begin{array}{ll}t=\frac{-35+3\sqrt{105}}{28} \\ \\ t=\frac{-35-3\sqrt{105}}{28}\end{array} \right.\)

Ta có \(y^3+6xy^2=y^3+6ty^3=7\Rightarrow y^3=\frac{7}{6t+1}\)

Thay vào ta tìm được \(\left[ \begin{array}{ll}y=\frac{7+\sqrt{105}}{4} \rightarrow x=\frac{5-\sqrt{105}}{8} \\ \\ y=\frac{7-\sqrt{105}}{4}\rightarrow x=\frac{5+\sqrt{105}}{8}\end{array} \right.\)

Ta có cặp nghiệm \((x,y)=(1,1),\left ( \frac{5+\sqrt{105}}{8},\frac{7-\sqrt{105}}{4} \right ),\left ( \frac{5-\sqrt{105}}{8},\frac{7+\sqrt{105}}{4} \right )\)

NV
11 tháng 7 2021

Đề bài không chính xác, pt này không giải được

Pt hợp lý cần có dạng: 

\(\dfrac{2x}{3x^2-5x+2}+\dfrac{13x}{3x^2+x+2}=...\)

11 tháng 7 2021

thật là vẫn giải được ạ, nó chỉ try hard thôi ạ

26 tháng 10 2021

6) ĐKXĐ: \(x\le-6\)

\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)

\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)

Vậy \(x\le-6\)

7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)

Vậy \(x\ge\dfrac{2}{3}\)

8) ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)

\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)

9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)