Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H L F K O I G P D Q
a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC; AF=AK
=> \(\Delta\)ACF=\(\Delta\)ACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng)
Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.
H là trực tâm của tam giác ABC => CH\(\perp\)AB (tại D)
=> ^HCB + ^ABC = 900 (1)
Lại có AH\(\perp\)BC => ^LHC + ^HCB = 900 (2)
Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 1800
=> ^ABC + ^AHC = 1800. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 1800
Xét tứ giác AHCK có: ^AKC + ^AHC =1800 => Tứ giác AHCK nội tiếp đường tròn (đpcm).
b) AO cắt GI tại Q
Gọi giao điểm của AO và (O) là P = >^ACP=900 => ^CAP+^CPA=900 (*)
Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC
Mà ^ABC+^AHC=1800 => ^CPA+^AHC=1800 (3).
Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI
Lại có \(\Delta\)ACF=\(\Delta\)ACK => ^FAC=^KAC hay ^KAI=^GAI => ^GAI=^CHI
Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn
=> ^AIG+^AHG=1800 hay ^AIG + ^AHC=1800 (4)
Từ (3) và (4) => ^AIG=^CPA (**)
Từ (*) và (**) => ^CAP+^AIG=900 hay ^IAQ+^AIQ=900 => \(\Delta\)AIQ vuông tại Q
Vậy AO vuông góc với GI (đpcm).
1) Vì E là giao điểm của OD và AC; AD,DC là tiếp tuyến của (O)
\(\Rightarrow OD\perp AC\)tại E
\(\Rightarrow\widehat{CEO}=90^0\)
Lại có: CH vuông góc với AB \(\Rightarrow\widehat{CHO}=90^0\)
Xét tứ giác OECH có: \(\widehat{CEO}+\widehat{CHO}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác OECH
\(\Rightarrow OECH\)nội tiếp (dhnb )
2) \(2\widehat{BCF}+\widehat{BFC}=sđ\widebat{BC}+\frac{1}{2}\left(sđ\widebat{AC}-sđ\widebat{BC}\right)\)
\(=\frac{1}{2}\left(sđ\widebat{AC}+sđ\widebat{BC}\right)\)
\(=90^0\left(đpcm\right)\)
3) Kẻ tiếp tuyến By của (O). By cắt DC tại P. Gọi K là giao điểm của BC và OP.
Ta có: AC // OP ( cùng vuông góc với BC )
Xét tam giác DOP có : EC // OP
\(\Rightarrow\frac{DE}{DO}=\frac{DC}{DP}\)(1)
Lại có: CH // BP ( cùng vuông góc với AB )
Xét tam giác DBP có: CM // BP
\(\Rightarrow\frac{DM}{DB}=\frac{DC}{DP}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{DE}{DO}=\frac{DM}{DB}\)
Xét tam giác DOB có \(\frac{DE}{DO}=\frac{DM}{DB}\left(cmt\right)\); E thuộc OD , M thuộc DB
\(\Rightarrow EM//OB\)ta let đảo
Hay EM // AB ( đpcm)
1:
a: M là điểm chính giữa của cung AB
=>OM vuông góc AB
góc APB=1/2*sđ cung AB=90 độ
góc COB+góc CPB=180 độ
=>COBP nội tiếp
Xet ΔAOC vuông tại O và ΔAPB vuông tại P có
góc CAO chung
=>ΔAOC đồng dạng với ΔAPB
=>AO/AP=AC/AB
=>AP*AC=AO*AB=2R^2 ko đổi
b: Xét ΔBOD vuông tại O và ΔCOA vuông tại O có
góc BDO=góc CAO
=>ΔBOD đồng dạng với ΔCOA
c: góc OPI=90 độ
=>góc IPC+góc OPC=90 độ
=>góc IPC+góc PAB=90 độ
=>góc IPC=góc ACO=góc ICP
=>IC=IP và góc IDP=góc IPD
=>IC=IP=ID
=>IC=ID
a: Ta có:ΔOCA cân tại O
mà OD là đường cao
nên OD là đường trung trực của AC
b: Xét ΔOAD và ΔOCD có
OA=OC
góc AOD=góc COD
OD chung
Do đó: ΔOAD=ΔOCD
Suy ra: góc OCD=90 độ
hay DC là tiếp tuyến của (O)
c: Xét (O) có
ΔBCA nội tiếp
BA là đường kính
Do đó: ΔBCA vuông tại C
=>BC vuông góc với AC
=>BC//OD