K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Câu 36:

Để f(x) là hàm số bậc nhất thì \(6m-1\ne0\)

hay \(m\ne\dfrac{1}{6}\)

NV
27 tháng 3 2022

Xét BPT: \(x^2-8x+15\le0\Leftrightarrow3\le x\le5\Rightarrow D_1=\left[3;5\right]\)

Xét BPT: \(\left(m^2+1\right)x+m\ge23+2mx\)

\(\Leftrightarrow\left(m^2-2m+1\right)x\ge23-m\)

\(\Leftrightarrow\left(m-1\right)^2x\ge23-m\) (1)

- Với \(m=1\Rightarrow\left(1\right)\) trở thành \(0\ge22\) (vô lý) \(\Rightarrow\left(1\right)\) vô nghiệm (loại)

- Với \(m\ne1\Rightarrow\left(m-1\right)^2>0;\forall m\)

\(\left(1\right)\Leftrightarrow x\ge\dfrac{23-m}{\left(m-1\right)^2}\) \(\Rightarrow D_2=\left[\dfrac{23-m}{(m-1)^2};+\infty \right)\)

Hệ đã cho có nghiệm khi và chỉ khi \(D_1\cap D_2\ne\varnothing\)

\(\Rightarrow\dfrac{23-m}{\left(m-1\right)^2}\le5\)

\(\Leftrightarrow23-m\le5\left(m-1\right)^2\)

\(\Leftrightarrow5m^2-9m-18\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-\dfrac{6}{5}\end{matrix}\right.\)

16 tháng 3 2023

2x² + 5x - 12 = 0

∆ = 25 + 4.2.12 = 121

x₁ = (-5 + 11)/4 = 3/2

x₂ = (-5 - 11)/4 = -4

Bảng xét dấu

         x        -∞   -4   3/2  +∞

2x²+5x-12      +      -       +

Các nghiệm nguyên của bpt là: -4; -3; -2; -1; 0; 1

Vậy bpt đã cho có 6 nghiệm nguyên

 

15 tháng 2 2022

a) \(\left\{{}\begin{matrix}2x-7>0.\\5x+1>0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x>7.\\5x>-1.\end{matrix}\right.\) \(\left\{{}\begin{matrix}x>\dfrac{7}{2}.\\x>\dfrac{-1}{5}.\end{matrix}\right.\)

\(\Rightarrow x>\dfrac{7}{2}.\) \(\Rightarrow x\in\left(\dfrac{7}{2};+\infty\right).\)

Kết luận: Tập nghiệm của hệ bất phương trình trên là \(x\in\left(\dfrac{7}{2};+\infty\right).\)

b) \(\left\{{}\begin{matrix}\left(2x+3\right)\left(x-1\right)>0.\\7x-5< 0.\end{matrix}\right.\) \(\Leftrightarrow\text{​​}\text{​​}\)\(\left\{{}\begin{matrix}\left(2x+3\right)\left(x-1\right)>0.\left(1\right)\\x< \dfrac{5}{7}.\left(2\right)\end{matrix}\right.\)

Xét (1): 

 \(2x+3=0.\Leftrightarrow x=\dfrac{-3}{2}.\\ x-1=0.\Leftrightarrow x=1.\)

Bảng xét dấu:

\(x\)                           \(-\infty\)             \(\dfrac{-3}{2}\)                \(1\)               \(+\infty\)          

\(2x+3\)                             -          \(0\)       +          |       +

\(x-1\)                               -          |         -          \(0\)      +

\(\left(2x+3\right)\left(x-1\right)\)              +         \(0\)         -          \(0\)      +

Vậy \(\left(2x+3\right)\left(x-1\right)>0.\Leftrightarrow\dfrac{-3}{2}< x< 1.\)

Kết hợp với (2).

\(\Rightarrow\) \(\dfrac{-3}{2}< x< \dfrac{5}{7}.\)

\(\Rightarrow x\in\left(\dfrac{-3}{2};\dfrac{5}{7}\right).\)

Kết luận: Tập nghiệm của hệ bất phương trình trên là \(x\in\left(\dfrac{-3}{2};\dfrac{5}{7}\right).\)

2:

a: pi/2<a<pi

=>cosa<0

sin^2a+cos^2a=1

=>cos^2a=1-4/9=5/9

=>cosa=-căn 5/3

cos2a=2*cos^2a-1=2*5/9-1=10/9-1=1/9

sin(2a-pi/6)

=sin2a*cospi/6-cos2a*sinpi/6

=2*sina*cosa*(căn 3/2)-1/9*1/2

\(=2\cdot\dfrac{2}{3}\cdot\dfrac{-\sqrt{5}}{3}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{1}{18}=\dfrac{-4\sqrt{15}-1}{18}\)

b; tan a=2

=>sin a=2*cosa

\(A=\dfrac{3\cdot\left(2\cdot cosa\right)^2-cos^2a+2}{5\cdot\left(2\cdot cosa\right)^2+3cosa\cdot2cosa}\)

\(=\dfrac{12\cdot cos^2a-cos^2a+2}{20cos^2a+6cos^2a}\)

\(=\dfrac{11cos^2a+2\left(4cos^2a+cos^2a\right)}{26cos^2a}=\dfrac{21}{26}\)

4:

a: (C): x^2+y^2-4x+2y-4=0

=>x^2-4x+4+y^2+2y+1=9

=>(x-2)^2+(y+1)^2=9

=>I(2;-1); R=3

b: Gọi (d) là phương trình cần tìm

(d)//4x+3y-1=0

=>(d): 4x+3y+c=0

I(2;-1);R=3

Theo đề, ta có: d(I;(d))=R=3

=>\(\dfrac{\left|4\cdot2+3\cdot\left(-1\right)+c\right|}{\sqrt{4^2+3^2}}=3\)

=>|c+5|=15

=>c=10 hoặc c=-20

NV
27 tháng 3 2022

23.

Gọi I là trung điểm MN \(\Rightarrow I\left(3;3\right)\)

\(\Rightarrow\overrightarrow{IN}=\left(2;-1\right)\Rightarrow IN=\sqrt{5}\)

Phương trình đường tròn đường kính MN, nhận I là tâm và có bán kính \(R=IN\) là:

\(\left(x-3\right)^2+\left(y-3\right)^2=5\)

Thay tọa độ E vào pt ta được:

\(\left(x-3\right)^2+4=5\Rightarrow\left(x-3\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)  \(\Rightarrow x_1x_2=8\)

Cả 4 đáp án của câu này đều sai

NV
27 tháng 3 2022

24.

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\)

Do \(\Delta\) là đường phân giác của góc tạo bởi d và k nên:

\(d\left(M;d\right)=d\left(M;k\right)\Leftrightarrow\dfrac{\left|2x+y\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|x+2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Leftrightarrow\left|2x+y\right|=\left|x+2y-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+y=x+2y-3\\2x+y=-x-2y+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y+3=0\\x+y-1=0\end{matrix}\right.\)

- Với \(x-y+3=0\), ta có: 

\(\left(x_E-y_E+3\right)\left(x_F-y_F+3\right)=2.1=2>0\Rightarrow E;F\) nằm cùng phía so với \(x-y+3=0\) (thỏa mãn)

- Với \(x+y-1=0\) ta có:

\(\left(x_E+y_E-1\right)\left(x_F+y_F-1\right)=2.7=14>0\Rightarrow E;F\) nằm cùng phía so với \(x+y-1=0\) (thỏa mãn)

Vậy cả đáp án A và D đều đúng

Tương tự như câu 23, câu 24 đề bài tiếp tục sai

20 tháng 12 2022

Giúp e với ạ e đang cần rất gấp ạ