K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

bạn ơi sai đề

\(\sqrt{x-10}\ge0\) ( với x >= 10 ).

11 tháng 6 2017

bạn ơi sai đề rồi ; căn bật sao âm được

Cái này chắc rút gọn :

\(\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{2.2+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

 

12 tháng 10 2021

\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\left(đk:x\le\dfrac{9}{2}\right)\)

\(\Leftrightarrow x^2-2x+4+x^2+5+2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=81-36x+4x^2\)

\(\Leftrightarrow2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=2x^2-34x+72\)

\(\Leftrightarrow4\left(x^2-2x+4\right)\left(x^2+5\right)=4x^4+1156x^2+5184-136x^3+288x^2-4896x\)

\(\Leftrightarrow4x^4-8x^3+36x^2-40x+80=4x^4-136x^3+1444x^2-4896x+5184\)

\(\Leftrightarrow128x^3-1408x^2+4856x-5104=0\)

\(\Leftrightarrow128x^2\left(x-2\right)-1152x\left(x-2\right)+2552\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(128x^2-1152x+2552\right)=0\)

\(\Leftrightarrow x=2\left(tm\right)\)(do \(128x^2-1152x+2552>0\))

12 tháng 10 2021

cảm mơn bn ạ

21 tháng 12 2021

\(=4-\dfrac{12}{5}\sqrt{5}-6+\dfrac{18}{5}\sqrt{5}+2\sqrt{5}-6\)

\(=-8+\dfrac{16}{5}\sqrt{5}\)

6 tháng 7 2021

Bài 1:

a)\(Q=2x-\sqrt{x^2+2x+1}=2x-\sqrt{\left(x+1\right)^2}=2x-\left|x+1\right|\)

b)Tại x=7 thay vào Q ta được:

\(Q=2.7-\left|7+1\right|=14-8=6\)

Bài 2:

\(\sqrt{x^2-6x}+7x=13\)\(\Leftrightarrow\sqrt{x^2-6x}=13-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}13-7x\ge0\\x^2-6x=\left(13-7x\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{13}{7}\\0=48x^2-85x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{13}{7}\\\Delta=\left(-85\right)^2-4.48.169=-25223< 0\end{matrix}\right.\)

\(\Rightarrow x\in\varnothing\)

Vậy pt vô nghiệm.

6 tháng 7 2021

em cảm mơn nhìu ạ yeu

26 tháng 6 2023

Giải

Ta có:

\(x=\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\)

Khi đó:

\(x^2=\left(\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\right)^2\\ =2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\\ =8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-3\left(2+\sqrt{3}\right)}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{6-3\sqrt{3}}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-\sqrt{2}.\sqrt{12-6\sqrt{3}}\\ =8-\sqrt{2}.\left(\sqrt{4+2\sqrt{3}}+\sqrt{12-6\sqrt{3}}\right)\\ =8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}+\sqrt{9-2.3\sqrt{3}+\left(\sqrt{3}\right)^2}\right)\\ 8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(3-\sqrt{3}\right)^2}\right)\\ =8-\sqrt{2}.\left(\sqrt{3}+1+3-\sqrt{3}\right)\\ =8-4\sqrt{2}\\ \Rightarrow x^4-16x^2=\left(8-4\sqrt{2}\right)^2-16.\left(8-4\sqrt{2}\right)\\ =96-64\sqrt{2}-128+64\sqrt{2}=-32\)

Vậy \(S=-32\)

NV
17 tháng 9 2021

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)

\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)

28 tháng 10 2021

\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{x-4}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-4=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=8\end{matrix}\right.\)