K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

ĐKXĐ: \(x\ne0\)

Ta có: \(\left(x-6\right)\left(\dfrac{360}{x}+2\right)=360\)

=> \(360+2x-\dfrac{2160}{x}-12=360\)

<=> \(\dfrac{2x^2-12x-2160}{x}=0\)

=> \(x^2-6x-1080=0\)

<=> \(\left(x^2+30x\right)-\left(36x+1080\right)=0\)

<=> \(\left(x+30\right)\left(x-36\right)=0\)

<=> \(\left[{}\begin{matrix}x=-30\\x=36\end{matrix}\right.\) ( TM)

Vậy ....................................

PT tương đương

\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=\dfrac{-3x^2}{4}\)

Xét \(x=0\Rightarrow6.6=0\)(vô lý)

Xét \(x\ne0\). Ta chia 2 vế của PT cho \(x^2\ne0\). PT tương đương

\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}+5\right)=\dfrac{-3}{4}\)

Đặt \(x+\dfrac{6}{x}+5=t\)

PT\(\Leftrightarrow t\left(t+2\right)=\dfrac{-3}{4}\Leftrightarrow t^2+2t+1=\dfrac{1}{4}\)

\(\Leftrightarrow\left(t+1\right)^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}t+1=\dfrac{-1}{2}\\t+1=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3}{2}\\t=\dfrac{-1}{2}\end{matrix}\right.\)

Đến đây bạn thay vào là tìm được nghiệm nhé.

 

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

NV
2 tháng 4 2021

ĐKXĐ: \(x\ne1\)

Đặt \(\dfrac{x+1}{x-1}=t\)

\(\Rightarrow t^2-6t+5=0\Leftrightarrow\left(t-1\right)\left(t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-1}=1\\\dfrac{x+1}{x-1}=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+1=x-1\left(vô-nghiệm\right)\\x+1=5x-5\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{3}{2}\)

20 tháng 11 2021

\(ĐK:x\ne0;x\ne1\\ PT\Leftrightarrow\left(\dfrac{1}{x}+2\right)\left(2+\dfrac{x+1}{x-1}-x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{x}=-2\\\dfrac{x+1}{x-1}=x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x+1=x^2-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)

21 tháng 5 2021

đk: \(x,y\ne-2\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+2}+\dfrac{y}{x+2}=1\\\left(\dfrac{x}{y+2}\right)^2+\left(\dfrac{y}{x+2}\right)^2=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\dfrac{x}{y+2}\\b=\dfrac{y}{x+2}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+2}+\dfrac{y}{x+2}=1\\\left(\dfrac{x}{y+2}\right)^2+\left(\dfrac{y}{x+2}\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\a^2+b^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+\left(1-a\right)^2=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\end{matrix}\right.\)

16 tháng 8 2023

\(110\%x+115\%y=400\\ \Rightarrow1.1x+1.15y=400\\ x+y=360\\ \Leftrightarrow1.1\left(x+y\right)=360\cdot1.1=396\\ \Rightarrow\left(1.1x+1.15y\right)-1.1\left(x+y\right)=1.1x+1.15y-1.1x-1.1y=0.05y=4\\ \Leftrightarrow y=\dfrac{4}{0.05}=80\\ \Rightarrow x=360-80=280.\)

4 tháng 4 2017

a) + 2 = x(1 - x)

⇔ x2 – 9 + 6 = 3x – 3x2

⇔ 4x2 – 3x – 3 = 0; ∆ = 57

x1 = , x2 =

b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.

(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)

⇔ 4 – x23x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0

∆ = 225 + 64 = 289, √∆ = 17

x1 = , x2 = 4

c) = . Điều kiện: x ≠ -1; x ≠ -2

Phương trình tương đương: 4(x + 2) = -x2 – x + 2

⇔ 4x + 8 = 2 – x2 – x

⇔ x2 + 5x + 6 = 0

Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.



4 tháng 4 2017

a) + 2 = x(1 - x)

⇔ x2 – 9 + 6 = 3x – 3x2

⇔ 4x2 – 3x – 3 = 0; ∆ = 57

x1 = , x2 =

b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.

(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)

⇔ 4 – x23x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0

∆ = 225 + 64 = 289, √∆ = 17

x1 = , x2 = 4

c) = . Điều kiện: x ≠ -1; x ≠ -2

Phương trình tương đương: 4(x + 2) = -x2 – x + 2

⇔ 4x + 8 = 2 – x2 – x

⇔ x2 + 5x + 6 = 0

Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.

nhớ like nha

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)