K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

( 3x-1) ( x2+ 9) = (3x-1) (7x-10)

⇒( 3x-1) ( x2+ 9) - (3x-1) (7x-10) = 0

⇒( 3x-1) (( x2+ 9)-(7x-10)) = 0

⇒( 3x-1)(x2+9-7x+10)=0

⇒( 3x-1)(x2-7x+19)=0

\(\left[{}\begin{matrix}3x-1=0\\x^2-7x+19=0\end{matrix}\right.\)

3x-1=0

⇒x=\(\dfrac{1}{3}\)

x2-7x+19=0

⇒ \(x^2-\dfrac{7}{2}x-\dfrac{7}{2}x+\left(\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)

⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)

vì \(\left(x-\dfrac{7}{2}\right)^2\ge0\)\(\dfrac{27}{4}>0\)

⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}>0\)

⇒ x vô nghiệm

Vậy x= \(\dfrac{1}{3}\)

 

31 tháng 7 2021

\(\left(3x-1\right)\left(x^2+9\right)=\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2+9\right)-\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

a: (2x-10)(5x+25)=0

=>2x-10=0 hoặc 5x+25=0

=>x=5 hoặc x=-5

b: (x+15)(x-2)=0

=>x+15=0 hoặc x-2=0

=>x=-15 hoặc x=2

c: =>x(x-7)=0

=>x=0 hoặc x=7

3 tháng 3 2022

a, (2x - 10) (5x + 25) = 0

⇒ 2x - 10 = 0 hoặc 5x + 25 = 0

⇒ x = 5 hoặc x = -5

b, (x + 15) (x - 2) = 0

⇒ x + 15 = 0 hoặc x - 2 = 0

⇒ x = -15 hoặc x = 2

c: =>x(x-7)=0

=>x=0 hoặc x=7

13 tháng 3 2016

\(1.\)  Hổ báo !?

\(M=x^2+5y^2-2xy+6x-18y+50\)

       \(=x^2-2xy+y^2+6x-6y+9+4y^2-12y+9+32\)

       \(=\left(x-y\right)^2+6\left(x-y\right)+9+\left(2x-3\right)^2+32\)

\(M=\left(x-y+3\right)^2+\left(2x-3\right)^2+32\)

Mà  \(\left(x-y+3\right)^2\ge0\)  và  \(\left(2x-3\right)^2\ge0\)  với mọi  \(x,y\) nên  \(M\ge32>0\)  

Vậy,  biểu thức  \(M\)  luôn dương với mọi  giá trị của  \(x,y\)

Bài 2 không hổ báo lắm nên tự xử nha

13 tháng 3 2016

2/   (x2 - 4).3 - (7x - 10).3 = (x2 - 7x + 6).3

 => (x2 - 4).3 - (7x - 10).3 - (x2 - 7x + 6).3 = 0

 => 3.(x2 - 4 - 7x + 10 - x2 + 7x - 6) = 0

 => 0x = 0

=> có vô số x thỏa phương trình trên

1/ đề bị sao ấy, giải không ra

5 tháng 7 2021

\(\dfrac{-7x+14}{\left(x+5\right)\left(2x-3\right)}>0\) (1)

ĐKXĐ: \(x\ne-5;x\ne\dfrac{3}{2}\)

BPT (1) \(\Leftrightarrow\dfrac{-7\left(x-2\right)}{\left(x+5\right)\left(2x-3\right)}>0\)

\(\Leftrightarrow\dfrac{x-2}{\left(x+5\right)\left(2x-3\right)}< 0\)

*Th1: \(\left\{{}\begin{matrix}x-2>0\\\left(x+5\right)\left(2x-3\right)< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>2\\-5< x< \dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow2< x< \dfrac{3}{2}\) (vô lí)

*Th2: \(\left\{{}\begin{matrix}x-2< 0\\\left(x+5\right)\left(2x-3\right)>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< 2\\\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2>x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\)

Vậy:....

5 tháng 11 2021

\(x^2>0\)

Do \(x^2\ge0\forall x\)

Nên để \(x^2>0\) thì \(x\ne0\)

14 tháng 6 2023

0=0 thì pt thoả mãn với mọi x 

-1>0 pt vô nghiệm \(S=\varnothing\)

15 tháng 6 2023

`1.` Với `0=0(` luôn đúng `)` `->` Kết luận: Vậy `S={x|x\inRR}`

`2.` Với `-1>0(` vô lý `)` `->` Kết luận: Vậy `S=∅`