Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Áp dụng định lí Pytago vào ΔEFG vuông tại E, ta được:
\(FG^2=EF^2+EG^2\)
\(\Leftrightarrow FG^2=15^2+5^2=250\)
hay \(FG=5\sqrt{10}\left(cm\right)\)
tam giác ABC vuông tại A có
AB=sin300.BC
BC=80:1/2
BC=160m
=>AC2=BC2-AB2
AC2=1602-802=19200
AC=80\(\sqrt{3}\) m
tam giác ABD vuông tại A có
AB=sin450.AD
AD=80:\(\dfrac{\sqrt{2}}{2}\)
AD=\(80\sqrt{2}\) m
CD = AC-AD=\(80\sqrt{3}-80\sqrt{2}\approx25m\)
\(\hept{\begin{cases}2x-5y=11\\3x+4x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3.\left(2x-5y\right)=3.11\\2.\left(3x+4y\right)=2.5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x-15y=33\\6x+8y=10\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x-15y-\left(6x+8y\right)=33-10\\3x+4y=5\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}-23y=23\\3x+4y=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=-1\\3x-4=5\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=3\end{cases}}}\)
Vậy....
Có 2 phương pháp giải hệ phương trình:
1.Phương pháp thế
2.Phương pháp cộng đại số
Ở Hệ phương trình này làm theo phương pháp thế nó khá là phức tạp nên ta dùng phương pháp cộng đại số.
P đạt giá trị nhỏ nhất \(\Leftrightarrow\frac{1}{P}\)đạt giá trị lớn nhất.
Xét : \(\frac{2}{P}=\frac{x^2+x+1}{x}=x+\frac{1}{x}+1\). Áp dụng bđt Cauchy với hai số không âm x và 1/x được :
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow\frac{2}{P}\ge3\Leftrightarrow P\le\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge0\\x=\frac{1}{x}\end{cases}\Leftrightarrow}x=1\)
Vậy Min P = 2/3 tại x = 1
Gọi số học sinh nam là x
Số học sinh nữ là 32-x
Vì khi chuyển 4 nữ đi thì số nam và số nữ bằng nhau nên ta có:
32-x-4=x
=>28-x=x
=>x=14
Vậy: Có 14 nam và 18 nữ