Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
Gọi x là số tuổi của An hiện nay(o<x<56)
Tuổi của ông An hiện nay là: x+56(tuổi)
Tuổi của ông An cách đây 5 năm là: x+56-5=x+51(tuổi)
Tuổi của An cách đây 5 năm là: x-5(tuổi)
Theo bài ta có phương trình:
\(8\left(x-5\right)=x+51\\ < =>8x-40=x+51\\ < =>7x=91\\ < =>x=13\left(tm\right)\)
=> Tuổi của ông hiện nay là: 13+56=69(tuổi)
Tuổi của An là:13 tuổi
\(A=3x^2-12x+16=3\left(x^2-4x\right)+16\)
\(=3\left(x^2-4x+4-4\right)+16\)
\(=3\left(x^2-4x+4\right)-3.4+16\)
\(=3\left(x-2\right)^2+4\ge4\), với mọi x
Vì \(\left(x-2\right)^2\ge0\) với mọi x
nên \(A=3\left(x-2\right)^2+4\ge3.0+4=4\) với mọi x
dấu "=" xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy giá tri nhỏ nhất của A là 4 tại x=2
a: Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)
Do đó: AMIN là hình chữ nhật
Bài 6: Ta có:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow4x^2+y^2+z^2-4xy-4xz+2yz+y^2-6y+9+z^2-10z+25=0\)
\(\Leftrightarrow\left[\left(2x\right)^2+y^2+z^2-2\cdot2x\cdot y-2\cdot2x\cdot z+2\cdot y\cdot z\right]+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Mà: \(\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\forall x,y,z\)
Mặt khác: \(\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y-z=0\\y-3=0\\z-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3-5=0\\y=3\\z=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=8\\y=3\\z=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=5\end{matrix}\right.\)
Thay vào S ta có:
\(S=\left(4-4\right)^{2023}+\left(3-4\right)^{2025}+\left(5-4\right)^{2027}=0-1+1=0\)
\(2x^4-7x^3+17x^2-20x+14\)
\(=2x^4-3x^3+7x^2-4x^3+6x^2-14x+4x^2-6x+14\)
\(=x^2\left(2x^2-3x+7\right)-2x\left(2x^2-3x+7\right)+2\left(2x^2-3x+7\right)\)
\(=\left(x^2-2x+2\right)\left(2x^2-3x+7\right)\)