Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 trước ạ
Trước khi trả lời câu hỏi này mình muốn cung cấp thêm chút kiến thức
HPT \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\)
*Có nghiệm duy nhất( tức là 1 nghiệm)⇔\(\frac{a}{a'}\)≠\(\frac{b}{b'}\)
*Vô nghệm (Tức không có nghiệm nào)⇔\(\frac{a}{a'}=\frac{b}{b'}\)≠\(\frac{c}{c'}\)
*Vô số nghiệm⇔\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Áp dụng điều trên t nhận thấy
a \(\frac{2}{3}\)≠\(\frac{1}{-1}\)=> HPT có nghiệm duy nhất
b\(\frac{1}{2}\)=\(\frac{2}{4}\)≠\(\frac{3}{1}\)=> HPT vô nghiệm
Tương tụ vầy c) có nghiệm duy nhất. d có vô số nghiệm
Bài 2
a Thay x=4 và y=3 vào PT ax+4y=5b-10 được 4a+12=5b-10(1)
Tương tự thay vào cái dưới ta được 12+3y=7-4a(2)
Từ (1) và (2) ta có một hpt mới
\(\left\{{}\begin{matrix}4a+12=5b-10\\12+3b=7-4a\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}4a-5b=-22\\4a+3b=-5\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}4a-5b=-22\\-8b=-17\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=\frac{-91}{32}\\b=\frac{17}{8}\end{matrix}\right.\)
Bài 3
\(\left\{{}\begin{matrix}2x-y=2xy\\5x+3y=4xy\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}4x-2y=4xy\left(1\right)\\5x+3y=4xy\left(2\right)\end{matrix}\right.\)
Lấy cả hai vế của (1) trừ cho cả hai vế của (2) ta được
-x-5y=0⇔x=-5y. Thay vào (1) ta được
-20y-2y=-20y2
⇔\(20y^2-22y=0\)
⇔y(20y-22)=0
⇔\(\left[{}\begin{matrix}y=0=>x=0\\y=\frac{11}{10}=>x=\frac{-11}{2}\end{matrix}\right.\)
Vậy...
a. Khi m = 2, ta được:
\(\left\{{}\begin{matrix}3x-y=2.2+3\\x+2y=3.2+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-y=7\\x+2y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2.\left(3x-7\right)=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+6x-14=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\7x=22\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x=\dfrac{22}{7}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{22}{7}\\y=\dfrac{17}{7}\end{matrix}\right.\)
TH1 : Thay m = 0 vào hệ phương trình, hệ phương trình có dạng
\(\hept{\begin{cases}2x+y=2\\x+2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x+y=2\\2x+4y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}-3y=0\\2x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\2x+y=2\end{cases}}}\)
Thay y = 0 vào phương trình 2 ta được : \(\left(2\right)\Rightarrow2x=0\Leftrightarrow x=0\)
Vậy với m = 0 hệ phương trình có một nghiệm ( x ; y ) = ( 0 ; 0 )
tương tự 3 TH còn lại nhé
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
\(\begin{cases}2x-y=m-1\\x+2y=3m+2\end{cases}\)=>\(\begin{cases}4x-2y=2m-2\\x+2y=3m+2\end{cases}\)=>\(\begin{cases}5x=5m\\x+2y=3m+2\end{cases}\)=>\(\begin{cases}x=m\\x+2y=3m+2\end{cases}\)
=>\(\begin{cases}x=m\\y=m+1\end{cases}\)
ban ơi mh ghi thíu để bài nữa là thỏa mãn x^2+y^2=5