Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Điều kiện để 2 đồ thị hàm số vuông góc với nhau.a.a'=-1
* Điều kiện để 2 đồ thị hàm số cắt nhau tại 1 điểm trên trục hoành.a khác a'
và b/a khác b'/a'
* Điều kiện để 2 đồ thị hàm số cắt nhau tại một điểm trên trục tung a khác a'
và b=b'
* Điều kiện để 2 đồ thị hàm số song song với nhau a=a'
và b khác b'
* Điều kiện để 2 đồ thị hàm số cắt nhau.a khác a'
* Điều kiện để 2 đồ thị hàm số trùng nhau.a=a' và b=b'
* Điều kiện để 2 đồ thị hàm số song song và cắt nhau trên trục tung kết hợp lần lượt of 2 điều kiện
a, Thay x = -2 => y = -2 + 4 = 2 => A(-2;2)
(d) cắt y = x + 4 tại A(-2;2) <=> 2 = -2 ( m + 1 ) - 2
<=> -2m - 2 - 2 = 2 <=> -2m = 6 <=> m = -3
Vậy (d) : y = -2x - 2
b, bạn tự vẽ nhé
c, Cho x = 0 => y = -2
=> (d) cắt trục Oy tại A(0;-2) => OA = | -2 | = 2
Cho y = 0 => x = -1
=> (d) cắt trục Ox tại B(-1;0) => OB = | -1 | = 1
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}.2.1=1\)( dvdt )
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\hept{m+5=22m−10≠−1\hept{m+5=22m−10≠−1 <=> \hept{m=−3m≠92\hept{m=−3m≠92 <=> m=−3
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: y0=(m+5)x0+2m−10y0=(m+5)x0+2m−10
<=> mx0+5x0+2m−10−y0=0mx0+5x0+2m−10−y0=0
<=> m(xo+2)+5x0−y0−10=0m(xo+2)+5x0−y0−10=0
Để M cố định thì: \hept{x0+2=05x0−y0−10=0\hept{x0+2=05x0−y0−10=0 <=> \hept{x0=−2y0=−20\hept{x0=−2y0=−20
Vậy...
1) Hàm số đồng biến khi x > 0 và nghịch biến khi x < 0
Bảng giá trị:
Đồ thị:
2) Thay tọa độ điểm M(3; 9) vào (P) ta được:
\(9=3^2\) (đúng)
Vậy điểm M(3; 9) thuộc đồ thị (P)
a, Cách vẽ đồ thị hàm số y=x^2 và y=2x-1
b, bằng cách giải PT xác định tọa độ giao điểm 2 đồ thị trên
a) Đồ thị hàm số y = x2 là parabol đi qua 3 điểm O(0; 0); A(1;1); B(-1; 1) ; nhận trục Oy là trục đối xứng
+) Đồ thị hàm số y = 2x -1 là đường thẳng đi qua 2 điểm C(0; -1); D(1/2; 0)
b) Hoành độ giao điểm là nghiệm của phương trình: x2 = 2x - 1 => x2 - 2x + 1 = 0 => (x -1)2 = 0 => x = 1
=> y = 1
Vậy toạ độ giao điểm của hai đồ thị hàm số là điểm (1;1)