Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(0;2;2\right);\overrightarrow{AC}=\left(2;2;0\right);\overrightarrow{AD}=\left(1;1;\sqrt{2}\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(-4;4;-4\right)\)
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right].\overrightarrow{AD}=-4+4-4\sqrt{2}=-4\sqrt{2}\ne0\)
\(\Rightarrow A;B;C;D\) không đồng phẳng hay ABCD là 1 tứ diện
Phương trình mặt cầu ngoại tiếp tứ diện có dạng:
\(x^2+y^2+z^2-2ax-2by-2cz+d=0\)
Thay tọa độ 4 điểm vào ta được hệ:
\(\left\{{}\begin{matrix}-2a+2c+d+2=0\\-2a-4b-2c+d+6=0\\-6a-4b+2c+d+13=0\\-4a-2b-2\left(\sqrt{2}-1\right)c+d+8-2\sqrt{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{6+\sqrt{2}}{8}\\b=\dfrac{16-\sqrt{2}}{8}\\c=\dfrac{-8+\sqrt{2}}{8}\\d=\dfrac{3}{2}\end{matrix}\right.\)
Pt mặt cầu: \(x^2+y^2+z^2-\dfrac{6+\sqrt{2}}{4}x-\dfrac{16-\sqrt{2}}{4}y+\dfrac{8-\sqrt{2}}{4}z+\dfrac{3}{2}=0\)
Lời giải:
\(\lim\limits_{x\to 2-}y=\lim\limits_{x\to 2-}\frac{\sqrt{4-x^2}}{(x-2)(x-3)}=\lim\limits_{x\to 2-}\frac{\sqrt{2+x}}{\sqrt{2-x}(x-3)}=-\infty \) nên $x=2$ là TCĐ
Vì \(x\in [-2;2)\) nên không tồn tại \(\lim\limits_{x\to +\infty }y\) nên đths không có TCN
Còn $x=3$ không thể là TCĐ vì tại $x=3$ thì $\sqrt{4-x^2}$ không tồn tại .
16.
Số cạnh của 1 lăng trụ luôn chia hết cho 3 nên A
17.
Chóp có đáy là đa giác n cạnh sẽ có n mặt bên (mỗi cạnh đáy và đỉnh sẽ tạo ra 1 mặt bên tương ứng)
Do đó chóp có n+1 mặt (n mặt bên và 1 mặt đáy)
Chóp có n+1 đỉnh (đáy n cạnh nên có n đỉnh, cộng 1 đỉnh của chóp là n+1)
Do đó số mặt bằng số đỉnh
18. D
19. A
20. C
Gọi V là thể tích khi quay phần giới hạn bởi \(y=\dfrac{1}{x}\) ; x=1, y=0; Ox quanh Ox
\(\Rightarrow V=V_1+V_2\)
\(V=\pi\int\limits^5_1\dfrac{1}{x^2}dx=\dfrac{4\pi}{5}\)
\(V_1=\pi\int\limits^k_1\dfrac{1}{x^2}dx=-\dfrac{\pi}{x}|^k_1=\pi-\dfrac{\pi}{k}\)
\(\Rightarrow V_2=V-V_1=\dfrac{4\pi}{5}-\pi+\dfrac{\pi}{k}=\dfrac{\pi}{k}-\dfrac{\pi}{5}\)
\(\Rightarrow\pi-\dfrac{\pi}{k}=2\left(\dfrac{\pi}{k}-\dfrac{\pi}{5}\right)\)
\(\Rightarrow k=\dfrac{15}{7}\)