Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 7215 = (23.32)15 = 245.330
321.969 = 321.(25.39) = 330.245
Suy ra 7215 = 321.969
Ta có: 7515 = ( 23 . 33 )15 = 245 . 330
3121 . 969 = 321 . ( 25 . 39 ) = 330 . 245
\(\Rightarrow\) 7515 = 3121 . 969
Chúc bạn hok tốt!!!Nguyễn Hoàng Linh
a) Ta có:\(\frac{19}{33}\) =\(\frac{38}{66}\); \(\frac{16}{11}\)=\(\frac{96}{66}\); \(\frac{13}{22}\)=\(\frac{39}{66}\)
\(\frac{38}{66}\)<\(\frac{39}{66}\)<\(\frac{96}{66}\)hay \(\frac{19}{33}\)<\(\frac{13}{22}\)<\(\frac{16}{11}\)
Vậy các số hữu tỉ sắp xếp theo thứ tự tăng dần là :\(\frac{19}{33}\);\(\frac{13}{22}\);\(\frac{16}{11}\).
b)Ta có: \(\frac{-18}{12}\)=\(\frac{-630}{420}\); \(\frac{-10}{7}\)=\(\frac{-600}{420}\);\(\frac{-8}{5}\)=\(\frac{-672}{420}\)
\(\frac{-672}{420}\)<\(\frac{-630}{420}\)<\(\frac{-600}{420}\)hay \(\frac{-8}{5}\)<\(\frac{-18}{12}\)<\(\frac{-10}{7}\)
Vậy các số hữu tỉ sắp xếp theo thứ tự tăng dần là: \(\frac{-8}{5}\);\(\frac{-18}{12}\);\(\frac{-10}{7}\).
\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)
\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)
\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)
\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)
\(=\dfrac{7}{2\left(1+6\right)}\)
\(=\dfrac{7}{2.7}\)
\(=\dfrac{1}{2}\)
a) \(5^{20}và2550^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)
=> \(5^{20}< 2550^{10}\)
b) \(999^{10}và999999^5\)
\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)
=> \(999^{10}< 999999^5\)
c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)
\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)
\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)
\(\dfrac{-1}{5}=\dfrac{-3}{15}\)
\(\dfrac{-1}{3}=\dfrac{-5}{15}\)
=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)
=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
\(\frac{9x}{36}=\frac{12y}{36}=\frac{4z}{36}\)
=> 9x = 12y=4z
=> 3x = 4y ; 3y = z ; 9x = 4z
Ta có: x - 3y + 4z = 62
<=> x - z + 9x = 62
=> -8x - z = 62
=>
libra is my cute little girl ơi, hình như bạn chép sai đề rùi thì phải, kiểm tra lại và sửa đi nhé
a) \(A=4+4^2+4^3+...+4^{200}\)
\(4A=4^2+4^3+...+4^{201}\)
\(4A-A=3A=4^{201}-4\)
\(A=\frac{4^{201}-4}{3}\)
b) \(B=1+5+5^2+...+5^{2017}\)
\(5B=5+5^2+5^3+...+5^{2018}\)
\(5B-B=4B=5^{2018}-1\)
\(B=\frac{5^{2018}-1}{4}\)
c) \(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{500}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{499}}\)
\(3C-C=2C=1-\frac{1}{3^{500}}=\frac{3^{500}-1}{3^{500}}\)
\(C=\frac{\left(\frac{3^{500}-1}{3^{500}}\right)}{2}\)
T_i_c_k cho mình nha,có j ko hiểu cứ hỏi mình nhé ^^
A. \(32^9=\left(2^5\right)^9=2^{45}\)
\(^{16^{10}=\left(2^4\right)^{10}=2^{40}}\)
Vì \(^{2^{45}>2^{40}}\)nên \(32^9>16^{10}\)
B. \(5^{300}=5^{3\times100}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
Vì \(125^{100}< 243^{100}\) nên \(5^{300}< 3^{500}\)