K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019
https://i.imgur.com/7VWAhd4.jpg
DD
11 tháng 8 2021

\(y=-\frac{x^3}{3}+2x^2-mx+1\)

\(y'=-x^2+4x-m\)

Để hàm số luôn nghịch biến trên \(ℝ\)thì \(y'\le0\)với mọi \(x\inℝ\).

Suy ra \(-x^2+4x-m\le0\)với mọi \(x\inℝ\).

\(\Leftrightarrow\hept{\begin{cases}-1< 0\\\Delta'\le0\end{cases}}\Leftrightarrow4+m\le0\Leftrightarrow m\le-4\).

27 tháng 6 2021

1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)

ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le3\)

27 tháng 6 2021

bài 2,3 đợi mình tí, gõ máy mất thời gian quá nếu mà được thì tối mình chụp lại cho

NV
25 tháng 6 2021

Pt hoành độ giao điểm:

\(x^3+\left(m+3\right)x^2-2-m=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+\left(m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+\left(m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

Đồ thị hàm số cắt Ox tại 3 điểm pb khi và chỉ khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=1-\left(m+2\right)-m-2\ne0\\\Delta=\left(m+2\right)^2+4\left(m+2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m-3\ne0\\m^2+8m+12>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne-\dfrac{3}{2}\\\left[{}\begin{matrix}m>-2\\m< -6\end{matrix}\right.\end{matrix}\right.\)

NV
31 tháng 8 2021

\(y'=mx^2-2\left(m+1\right)x+m-2\)

- Với \(m=0\) ko thỏa mãn

- Với \(m\ne0\) bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\4m+1\le0\end{matrix}\right.\) \(\Rightarrow m\le-\dfrac{1}{4}\)

1 tháng 9 2021

tại sao m=0 ko thoả mãn vậy ạ?