K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)

\(=\dfrac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}-\sqrt{3}+5\cdot\dfrac{2}{\sqrt{3}}\)

\(=-9\sqrt{3}+\dfrac{10}{\sqrt{3}}\)

\(=\dfrac{-27+10}{\sqrt{3}}=\dfrac{-17\sqrt{3}}{3}\)

b) Ta có: \(\sqrt{150}-\sqrt{1.6}\cdot\sqrt{60}+4.5\cdot\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)

\(=5\sqrt{6}-4\sqrt{6}-\sqrt{6}+\dfrac{9}{2}\cdot\sqrt{\dfrac{8}{3}}\)

\(=\dfrac{9}{2}\cdot\dfrac{2\sqrt{2}}{\sqrt{3}}\)

\(=3\sqrt{6}\)

19 tháng 7 2021

\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4.5\sqrt{2\dfrac{2}{3}}-\sqrt{6}\\ =5\sqrt{6}+4\sqrt{6}+3\sqrt{6}-\sqrt{6}\\ =11\sqrt{6}\)

18 tháng 9 2021

\(4,\\ 2.B=\sqrt{x}-1+\dfrac{2-2\sqrt{x}}{\sqrt{x}}\left(x>0\right)\\ B=\dfrac{x-\sqrt{x}+2-2\sqrt{x}}{\sqrt{x}}=\dfrac{x-3\sqrt{x}+2}{\sqrt{x}}\)

\(3.x=\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\left(3+\sqrt{2}\right)+\left(3-\sqrt{2}\right)=6\)

Thay vào B, ta được \(B=\dfrac{6-3\sqrt{6}+2}{\sqrt{6}}=\dfrac{6\sqrt{6}-18+2\sqrt{6}}{6}=\dfrac{4\sqrt{6}-9}{3}\)

\(4.B=0\Leftrightarrow\dfrac{x-3\sqrt{x}+2}{\sqrt{x}}=0\Leftrightarrow x-3\sqrt{x}+2=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

\(7.B\in Z\Leftrightarrow\dfrac{x-3\sqrt{x}+2}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}-3+\dfrac{2}{\sqrt{x}}\in Z\\ \Leftrightarrow\dfrac{2}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{1;4\right\}\left(\sqrt{x}>0\right)\)

 

13 tháng 11 2021

2: Thay x=1 và y=-4 vào (d), ta được:

2m+2=-4

hay m=-3

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

25 tháng 8 2023

giúp mình với

19 tháng 2 2016

k cho thêm gì  nữa ak

19 tháng 2 2016

Em mới học lớp 8

Để lên lớp 9 em giải cho

19 tháng 2 2016

\(2x+5y=13\Leftrightarrow x=\frac{13-5y}{2}\Rightarrow\)y là số lẻ. 

Đặt \(y=2z+1\left(z\in Z\right)\Rightarrow x=4-5z\)

Vậy tập nghiệm nguyên của phương trình là \(\cdot\left(x;y\right)=\left(4-5z;2z+1\right)\)với z nguyên

2 tháng 4 2023

a) \(\frac{\sqrt{640}\sqrt{34,3}}{\sqrt{567}}\)

\(= \frac{\sqrt{64.10}\sqrt{49.\frac{7}{10}}}{\sqrt{81.7}}\)

\(= \frac{\sqrt{64}\sqrt{10}\sqrt{49}\sqrt{\frac{7}{10}}}{\sqrt{81}\sqrt{7}}\)

\(= \frac{\sqrt{64}\sqrt{49}}{\sqrt{81}} . \frac{\sqrt{10}\sqrt{\frac{7}{10}}}{\sqrt{7}}\)

\(= \frac{8.7}{9} . \frac{\sqrt{10 . \frac{7}{10}}}{\sqrt{7}}\)

\(= \frac{56}{9} . \frac{\sqrt{7}}{\sqrt{7}}\)

\(= \frac{56}{9} . 1 = \frac{56}{9}\)

b) \(\sqrt{21,6}\sqrt{810}\sqrt{11^2−5^2}\)

\(= \sqrt{216.\frac{1}{10}}\sqrt{81.10}\sqrt{(11−5)(11+5)}\)

\(= \sqrt{36.6.\frac{1}{10}}\sqrt{81}\sqrt{10}\sqrt{6.16}\)

\(= \sqrt{36}\sqrt{6}\sqrt{\frac{1}{10}}\sqrt{81}\sqrt{10}\sqrt{6}\sqrt{16}\)

\(= (\sqrt{36}\sqrt{81}\sqrt{16}).(\sqrt{6}\sqrt{6}).(\sqrt{\frac{1}{10}}\sqrt{10})\)

\(= (6.9.4).\sqrt{6.6}.\sqrt{\frac{1}{10}.10}\)

\(= (54.4).\sqrt{36}.\sqrt{1}\)

\(= 216.6.1 = 1296\)