K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

b: Để P nguyên thì \(6\sqrt{x}-4⋮2\sqrt{x}+1\)

\(\Leftrightarrow2\sqrt{x}+1\in\left\{1;7\right\}\)

hay \(x\in\left\{0;9\right\}\)

31 tháng 10 2021

Làm hết mà chi tiết ra đc không ạ?

Tổng diện tích của 3 quả bóng l;à:

S1=3*4pi*r^2=12*pi*r^2

Diện tích xung quanh của cái hộp l;à: S2=12*pi*r^2

=>V=S1/S2=1

23 tháng 3 2022

\(\Leftrightarrow-6\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{1;-2\right\}\)

23 tháng 3 2022

\(\dfrac{x+1}{x}-7=\dfrac{5}{x-2}\)

\(ĐK:x\ne0;2\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x-2\right)-7x\left(x-2\right)}{x\left(x-2\right)}=\dfrac{5x}{x\left(x-2\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)-7x\left(x-2\right)=5x\)

\(\Leftrightarrow x^2-2x+x-2-7x^2+14-5x=0\)

\(\Leftrightarrow-6x^2-6x+12=0\)

\(\Leftrightarrow-6\left(x^2+x+2\right)=0\)

Ta có: \(x^2+x+2>0;\forall x\)

Vậy pt vô nghiệm

 

a: Khi m=2 thì (1) sẽ là:

2x+y=2 và 4x+3y=10

=>x=-2 và y=6

b: 2x+y=m và 4x+3y=10

=>4x+2y=2m và 4x+3y=10

=>4x+3y=10 và 4x+2y=2m

=>y=10-2m và 2x=m-10+2m=3m-10

=>y=10-2m và x=3/2m-5

x>0 và y>0

=>10-2m>0 và 3/2m-5>0

=>m>5:3/2=10/3 và m<5

=>10/3<m<5

13 tháng 2 2022

a,\(\Delta=3^2-4\left(-2\right).6=9+48=57\)

\(x_1=\dfrac{-3+\sqrt{57}}{-4}=\dfrac{3-\sqrt{57}}{4}\)

\(x_2=\dfrac{-3-\sqrt{57}}{-4}=\dfrac{3+\sqrt{57}}{4}\)

b, \(\Delta=6^2-4.3.3=36-36=0\)

\(\Rightarrow x_1=x_2=\dfrac{-6}{2.3}=\dfrac{-6}{6}=-1\)

c, \(\Delta=1^2-4.6.5=1-120=-119< 0\)

Vậy pt vô nghiệm

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

a:

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a< >1\end{matrix}\right.\)

 \(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\cdot\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2+4\sqrt{a}\left(a-1\right)}{a-1}\cdot\dfrac{a-1}{\sqrt{a}}\)

\(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{\sqrt{a}}\)

\(=\dfrac{4\sqrt{a}+4\sqrt{a}\left(a-1\right)}{\sqrt{a}}\)

=4+4(a-1)

=4a

b: \(a=\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)\sqrt{2-\sqrt{3}}\)

\(=\left(2\sqrt{3}-2+3-\sqrt{3}\right)\cdot\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\left(\sqrt{3}+1\right)\cdot\dfrac{\left(\sqrt{3}-1\right)}{\sqrt{2}}=\dfrac{3-1}{\sqrt{2}}=\sqrt{2}\)

Khi \(a=\sqrt{2}\) thì \(P=4\cdot\sqrt{2}=4\sqrt{2}\)

26 tháng 10 2023

a: \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)+1=x-\sqrt{x}+1\)

b:

\(\dfrac{x}{12}=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)

\(\Leftrightarrow x\cdot\dfrac{1}{12}=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}\)

\(\Leftrightarrow\dfrac{x}{12}=\dfrac{1}{3}\)

=>x=36

Khi x=36 thì \(A=36-6+1=37-6=31\)

c: \(B=\dfrac{2\sqrt{x}}{A}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}\)

\(B-2=\dfrac{2\sqrt{x}-2x+2\sqrt{x}-2}{x-\sqrt{x}+1}\)

\(=\dfrac{-2x+4\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=\dfrac{-2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

=>B<2

\(2\sqrt{x}>0;x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>B>0

=>0<B<2