Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha
Áp dụng hằng đẳng thức \(\left(a+b\right)^2\) với \(a=x+y\) và \(b=z\)
Đã cẩn thận khoanh ngoặc cho bạn nhìn đỡ phải hỏi rồi mà vẫn đi hỏi :D
\(\dfrac{x^2+x+1}{x^2-x+1}-\dfrac{1}{3}=\dfrac{3x^2+3x+3-x^2+x-1}{3\left(x^2-x+1\right)}\)
\(=\dfrac{2x^2+4x+2}{3\left(x^2-x+1\right)}=\dfrac{2\left(x+1\right)^2}{3\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge0\)
Do đó: \(\dfrac{1}{3}\le\dfrac{x^2+x+1}{x^2-x+1}\)(1)
\(\dfrac{x^2+x+1}{x^2-x+1}-3=\dfrac{x^2+x+1-3x^2+3x-3}{x^2-x+1}\)
\(=\dfrac{-2x^2+4x-2}{x^2-x+1}=\dfrac{-2\left(x-1\right)^2}{x^2-x+1}\le0\)
Do đó: \(\dfrac{x^2+x+1}{x^2-x+1}\le3\)(2)
Từ (1)và (2) suy ra ĐPCM
\(1,\Leftrightarrow x^2-8x+16-x^2+x+12=7\\ \Leftrightarrow-7x=-21\\ \Leftrightarrow x=3\\ 2,\Leftrightarrow\left(x-4\right)^2-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Bài 2:
a: Xét ΔABC có
X là trung điểm của BC
Y là trung điểm của AB
Do đó: XY là đường trung bình
=>XY//AC và XY=AC/2=3,5(cm)
hay XZ//AC và XZ=AC
b: Xét tứ giác AZBX có
Y là trung điểm của AB
Y là trung điểm của ZX
Do đó: AZBX là hình bình hành
mà \(\widehat{AXB}=90^0\)
nên AZBX là hình chữ nhật
d: Xét tứ giác AZXC có
XZ//AC
XZ=AC
Do đó: AZXC là hình bình hành
=(x-2-y)(x+2-y)
giải chi tiết!