Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)
Ta được hệ:
\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)
\(\Rightarrow a^2+\left(1-a\right)^3=1\)
\(\Leftrightarrow a^3-4a^2+3a=0\)
\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế ta được:
\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)
\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
Tới đây em tự hoàn thành nốt
\(\left\{{}\begin{matrix}A+G=50\%\\\dfrac{A}{G}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}A+G=0,5\\\dfrac{A}{G}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}A+G=0,5\\A=0,6G\end{matrix}\right.\)
Thay \(A=0,6G\) vào ta có:
\(\Leftrightarrow\left\{{}\begin{matrix}0,6G+G=0,5\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1,6G=0,5\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=\dfrac{0,5}{1,6}\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=0,3125\\A=0,6\cdot0,3125\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=0,3125\\A=0,1875\end{matrix}\right.\)
Vậy: \(\left\{{}\begin{matrix}G=31,25\%\\A=18,75\%\end{matrix}\right.\)
\(\Leftrightarrow\left(x+3\right)\sqrt{2x^2+1}-\left(x+3\right)=x^2\)
=>\(\left(x+3\right)\cdot\left(\sqrt{2x^2+1}-1\right)=x^2\)
=>\(\left(x+3\right)\cdot\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}-x^2=0\)
=>\(x^2\left(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}-1\right)=0\)
=>x^2=0 hoặc \(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}=1\)
=>\(\left[{}\begin{matrix}x=0\\\sqrt{2x^2+1}+1=2x+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+1=\left(2x+5\right)^2;x>=-\dfrac{5}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\4x^2+20x+25-2x^2-1=0;x>=-\dfrac{5}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}2x^2+20x+24=0\\x>=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5+\sqrt{13}\end{matrix}\right.\)
=>Phương trình này có 2 nghiệm
ĐK: \(x\ge0\)
Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)
Khi đó bất phương trình tương đương:
\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)
\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)
Nguyễn Ngọc Hôm trước có câu tương tự mà nhỉ.