
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


đổi x= 38/5 ; y = 12/5
B= x(x+y) -7(x+y) = (x+y)(x-7)
B= (38/5 + 12/5)( 38/5-7)= 10.3/5 = 6
mới mở máy thấy làm liền đó

\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)
\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)
\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)
\(\Leftrightarrow x+2021=0\)
\(\Leftrightarrow x=-2021\)
x+2+2018x+3=2017x+4+2021x
\(\Leftrightarrow \frac{x + 2}{2019} + 1 + \frac{x + 3}{2018} + 1 = \frac{x + 4}{2017} + 1 + \frac{x}{2021} + 1\)
\(\Leftrightarrow \frac{x + 2021}{2019} + \frac{x + 2021}{2018} = \frac{x + 2021}{2017} + \frac{x + 2021}{2021}\)
\(\Leftrightarrow x + 2021 = 0\)
\(\Leftrightarrow x = - 2021\)

cái này mk làm ở câu dưới của bạn r` đó -_-" nèCâu hỏi của Phạm Hoa - Toán lớp 8 - Học toán với OnlineMath
a, =(x+2)*(y+2*x)
= (88+2)(y+2.-76)
= 90*y-6660
b, = (x-7)*(y+x)
\(\left(7\frac{3}{5}-7\right)\left(2\frac{2}{5}+7\frac{3}{5}\right)\)
= 3/5 . 10
=6
k cho tớ nha :))))))

ap dung cong thuc: a/b = c/d <=> ad= bc <=> c = ad/b
A = (4x2-7x+3)(x2+2x+1)/(x2-1)

A= 2x^2 + 4x + xy + 2y
=(xy+2x2)+(2y+4x)
=x(y+2x)+2(y+2x)
=(x+2)(y+2x)
Thay x=88,y=-76 ta được:
A=(88+2)*(-76+2*88)
=90*100
=9 000
B= x^2 +xy - 7x - 7y
=(xy-7y)+(x2-7x)
=y(x-7)+x(x-7)
=(x-7)(y+x).Thay vào tính bình thường

\(3\left(x-1\right)^2-3x\left(2-5\right)=21\)
\(\Leftrightarrow3x^2-6x+3+9x-21=0\)
\(\Leftrightarrow3x^2+3x-18=0\)
\(\Leftrightarrow3\left(x^2+x-6\right)=0\)
\(\Leftrightarrow3\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy \(S=\left\{2;-3\right\}\)

Đặt BT trên là A
Ta có :
\(A^2=5-\sqrt{21}+5+\sqrt{21}+2\sqrt{(5-\sqrt{21})\left(5+\sqrt{21}\right)}\)
\(=10+2\sqrt{25-21}\)
\(=10+2.\sqrt{4}=10+2.2=14\)
\(\Rightarrow A=\sqrt{14}\)
Ta có:
\(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\)
\(=\sqrt{\left(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\right)^2}\)
\(=\sqrt{5-\sqrt{21}+2\sqrt{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}+5+\sqrt{21}}\)
\(=\sqrt{10+2\sqrt{25-21}}\)
\(=\sqrt{10+2\sqrt{4}}=\sqrt{10+4}=\sqrt{14}\)

Trả lời:
a, \(A=\frac{x+5}{x+2}=\frac{x+2+3}{x+2}=\frac{x+2}{x+2}+\frac{3}{x+2}=1+\frac{3}{x+2}\)
Để \(A\inℤ\) thì \(\frac{3}{x+2}\inℤ\)
\(\Rightarrow3⋮x+2\Rightarrow x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
Vậy \(x\in\left\{-1;-3;1;-5\right\}\)
b, \(B=\frac{x+1}{x+2}=\frac{x+2-1}{x+2}=\frac{x+2}{x+2}-\frac{1}{x+2}=1-\frac{1}{x+2}\)
Để A là số nguyên thì \(1⋮x+2\Rightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng sau:
x+2 | 1 | -1 |
x | -1 | -3 |
Vậy \(x\in\left\{-1;-3\right\}\)
c, \(C=\frac{2x-1}{x+1}=\frac{2\left(x+1\right)-3}{x+1}=\frac{2\left(x+1\right)}{x+1}-\frac{3}{x+1}=2-\frac{3}{x+1}\)
Để C là số nguyên thì \(3⋮x+1\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
Vậy \(x\in\left\{0;-2;2;-4\right\}\)
Bài 6:
1: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
2: \(x^3+8y^3=x^3+\left(2y\right)^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
3: \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
4: \(x^3-8y^3=x^3-\left(2y\right)^3=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
Bài 5:
1: \(C=x^3+9x^2+27x+2027\)
\(=x^3+9x^2+27x+27+2000\)
\(=\left(x+3\right)^3+2000=\left(-23+3\right)^3+2000\)
=-8000+2000
=-6000
2: \(D=x^3+6x^2y+12xy^2+8y^3\)
\(=x^3+3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=\left(x+2y\right)^3=\left(-2y+2y\right)^3=0\)
Bài 4:
1: \(\left(2x-3\right)^3-2x\left(2x+1\right)^2\)
\(=8x^3-36x^2+54x-27-2x\left(4x^2+4x+1\right)\)
\(=8x^3-36x^2+54x-27-8x^3-8x^2-2x=-44x^2+52x-27\)
2: \(\left(3x-1\right)^3-27x^2\cdot\left(x+1\right)\)
\(=27x^3-27x^2+9x-1-27x^3-27x^2\)
\(=-54x^2+9x-1\)
3: \(\left(2x+1\right)^3-8x\left(x-1\right)^2\)
\(=8x^3+12x^2+6x+1-8x\left(x^2-2x+1\right)\)
\(=8x^3+12x^2+6x+1-8x^3+16x^2-8x=28x^2-2x+1\)
Bài 3:
1: \(\left(2x+3y\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2+\left(3y\right)^3\)
\(=8x^3+36x^2y+54xy^2+27y^3\)
2: \(\left(3x+2y\right)^3=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=27x^3+54x^2y+36xy^2+8y^3\)
3: \(\left(3x-2y\right)^3\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^3-54x^2y+36xy^2-8y^3\)
Bài 2:
1: \(x\left(1-x\right)+\left(x-1\right)^2=x-x^2+x^2-2x+1=-x+1\)
2: \(\left(x-3\right)^2-x^2+10x-7\)
\(=x^2-6x+9-x^2+10x-7=4x+2\)
Bài 1:
1: \(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1\)
2: \(\left(4+x\right)^2=4^2+2\cdot4\cdot x+x^2=x^2+8x+16\)
3: \(\left(6-x\right)^2=6^2-2\cdot6\cdot x+x^2=36-12x+x^2\)
4: \(\left(x-5\right)^2=x^2-2\cdot x\cdot5+5^2=x^2-10x+25\)