K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

Lưu ý: \(1=sin^2a+cos^2a\)

Do đó:

a.

\(1-sin^2a=\left(sin^2a+cos^2a\right)-sin^2a=cos^2a\)

b.

\(sina-sina.cos^2a=sina\left(1-cos^2a\right)=sina\left(sin^2a+cos^2a-cos^2a\right)\)

\(=sina.sin^2a=sin^3a\)

c.

\(\left(1-cosa\right)\left(1+cosa\right)=1-cos^2a=sin^2a+cos^2a-cos^2a=sin^2a\)

a:

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a< >1\end{matrix}\right.\)

 \(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\cdot\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2+4\sqrt{a}\left(a-1\right)}{a-1}\cdot\dfrac{a-1}{\sqrt{a}}\)

\(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{\sqrt{a}}\)

\(=\dfrac{4\sqrt{a}+4\sqrt{a}\left(a-1\right)}{\sqrt{a}}\)

=4+4(a-1)

=4a

b: \(a=\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)\sqrt{2-\sqrt{3}}\)

\(=\left(2\sqrt{3}-2+3-\sqrt{3}\right)\cdot\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\left(\sqrt{3}+1\right)\cdot\dfrac{\left(\sqrt{3}-1\right)}{\sqrt{2}}=\dfrac{3-1}{\sqrt{2}}=\sqrt{2}\)

Khi \(a=\sqrt{2}\) thì \(P=4\cdot\sqrt{2}=4\sqrt{2}\)

Bài 2: 

b: Ta có: \(B=\dfrac{15-5\sqrt{x}}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-2}=1\)

NV
31 tháng 3 2023

Do (d) đi qua C và D, thay tọa độ C và D vào pt (d) ta được:

\(\left\{{}\begin{matrix}a.\left(-1\right)+b=1\\a.\left(-2\right)+b=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\-2a+b=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=5\end{matrix}\right.\)

Phương trình (d) có dạng: \(y=4x+5\)

tan B=3/4

=>AC/AB=3/4

=>AC=4,5

BC=căn AB^2+AC^2=7,5

sin C=AB/BC=6/7,5=4/5

cos C=AC/BC=3/5

tan C=4/3

cot C=3/4

26 tháng 5 2021

Ta có

 \(a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right).\left(a+c\right)\\ Cmtt:b^2+1=\left(b+a\right).\left(b+c\right)\\ c^2+1=\left(c+a\right).\left(c+b\right)\)

Nên

 \(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\\ =\dfrac{\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{\left(c-a\right)}{\left(b+c\right)\left(b+a\right)}+\dfrac{\left(a-b\right)}{\left(c+a\right)\left(c+b\right)}\\ =\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)+\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =0\)

 

26 tháng 5 2021

\(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\)

\(=\dfrac{b-c}{a^2+ab+bc+ac}+\dfrac{c-a}{b^2+ab+bc+ca}+\dfrac{a-b}{c^2+ab+bc+ca}\)

\(=\dfrac{b-c}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{c-a}{b\left(a+b\right)+c\left(a+b\right)}+\dfrac{a-b}{c\left(c+a\right)+b\left(a+c\right)}\)

\(=\dfrac{b-c}{\left(a+c\right)\left(a+b\right)}+\dfrac{c-a}{\left(b+c\right)\left(a+b\right)}+\dfrac{a-b}{\left(b+c\right)\left(a+c\right)}\)

\(=\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(a+c\right)+\left(a-b\right)\left(a+b\right)}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)

\(=\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\) 

22 tháng 10 2021

\(b,B=\dfrac{x-4+2\sqrt{x}+6-3\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ c,M=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{x-\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\\ M=\dfrac{x-\sqrt{x}+2-x+2\sqrt{x}-1}{x-\sqrt{x}+2}\\ M=1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+2}=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\)

Ta có \(\left(\sqrt{x}-1\right)^2\ge0;x-\sqrt{x}+2=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

Do đó \(\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\ge0\)

\(\Leftrightarrow M=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\le1-0=1\)

Vậy \(M_{max}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)

22 tháng 10 2021

a: Thay \(x=3+2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{3+2\sqrt{2}-\sqrt{2}-1+2}{\sqrt{2}+1+3}=\dfrac{4+\sqrt{2}}{4+\sqrt{2}}=1\)

a: Xét ΔABC có góc A+góc B+góc C=180 độ

=>góc A=180 độ-30 độ-20 độ=130 độ

Xét ΔABC có BC/sinA=AC/sinB=AB/sinC

=>AC/sin30=AB/sin20=30/sin130

=>\(AC\simeq19,58\left(cm\right);AB\simeq13,39\left(cm\right)\)

ΔAHB vuông tại H có sin B=AH/AB

=>AH/13,39=1/2

=>AH=6,695(cm)

b: Xét ΔABC có AD là phân giác

nên AB/AC=BD/DC

=>\(\dfrac{BD}{DC}=\dfrac{13.39}{19.58}\)

=>\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}=\dfrac{BD+CD}{13.39+19.58}=\dfrac{30}{32.97}=\dfrac{1000}{1099}\)

=>\(BD\simeq12,18\left(cm\right);CD\simeq17,82\left(cm\right)\)

 

20 tháng 8 2023

Mình camon b nhé