Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ Q=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{x}\)
gọi x là vận tốc của ô tô
y là vận tốc của xe máy (km/h) (x>y>0)
sau 4h 2 xe gặp nhau nên tổng quãng đường AB bằng:
AB= 4.x+4.y = 4.(x+y) (km)
nên thgian ô tô và xe máy đi hết AB lần lượt là:
\(\dfrac{4\left(x+y\right)}{y}\)(h); \(\dfrac{4\left(x+y\right)}{x}\) (h)
vì ô tô đến sớm hơn xe máy 6h nên ta có pt:
\(\dfrac{4\left(x+y\right)}{y}\)-\(\dfrac{4\left(x+y\right)}{x}\)=6
⇔\(\dfrac{4x+4y}{y}\)-\(\dfrac{4x+4y}{x}\)=6
⇔4.\(\dfrac{x}{y}\) +4-4-\(\dfrac{4y}{x}\)=6
⇔\(\dfrac{x}{y}\)-\(\dfrac{y}{x}\)=\(\dfrac{6}{4}\)=\(\dfrac{3}{2}\)
đặt: t=\(\dfrac{x}{y}\) (t>0)
⇒t-\(\dfrac{1}{t}\)=\(\dfrac{3}{2}\)
⇔t2-\(\dfrac{3}{2}\)t-1=0
⇔(t -2)(t +\(\dfrac{1}{2}\))=0
⇔t=2
⇒\(\dfrac{x}{y}\)=2 ⇒x=2y
⇒AB=4.(x+y)=6x=12y
nên thgian ô tô và xe máy đi hết AB lần lượt là:
\(\dfrac{6x}{x}=6\) (h)\(\dfrac{12y}{y}=12\) (h)
Gọi thời gian xe máy đi hết quãng đường AB là x (h) (x>4)
thời gian xe máy đi hết quãng đường AB là y (h) (y>4)
Trong 1 giờ xe máy đi được \(\dfrac{1}{x}\) (quãng đường)
Trong 1 giờ ô tô đi được \(\dfrac{1}{y}\) (quãng đường)
Trong 1 giờ hai xe đi được \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(1\right)\)
Mà thời gian ô tô về đến A sớm hơn xe máy về đến B là 6 giờ nên: \(x-y=6\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\x-y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{x-6}=\dfrac{1}{4}\\y=x-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+24=0\\y=2-6\end{matrix}\right.\)(ĐK:\(x\ne6\)) \(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\)(TM)
Vậy thời gian xe máy đi hết quãng đường AB là 12 giờ
thời gian ô tô đi hết quãng đường AB là 6giờ
-Chúc bạn học tốt-
PT có 2 nghiệm phân biệt
`<=>(4m+3)^2-8(2m^2-1)>0`
`<=>16m^2+24m+9-16m^2+8>0`
`<=>24m+17>0`
`<=>24m> -17`
`<=>m>(-17)/24`
PT có 1 nghiệm =1 thì ta thay x=1 thì pt =
`=>2.1-(4m+3).1+2m^2-1=0`
`<=>2m^2-1-(4m+3)+2=0`
`<=>2m^2+1-4m-3=0`
`<=>2m^2-4m-2=0`
`<=>m^2-2m-1=0`
`a=1,b=-2,c=-1`
`Delta'=1+1=2`
`=>x_1=1+sqrt2(tm),1-sqrt2(tm)`
Vậy `m=1+-sqrt2` thì PT có 2 nghiệm phân biệt có 1 nghiệm = 1
PT có 1 nghiệm là `1 <=> 2-(4m+3)+2m^2-1=0`
`<=> 2m^2-4m-2=0`
`<=>m=1 \pm \sqrt2`.
\(b,\text{PT }\left(d_1\right)\text{ giao Oy: }x=0\Leftrightarrow y=2\Leftrightarrow A\left(0;2\right)\\ \text{PT }\left(d_2\right)\text{ giao Oy: }x=0\Leftrightarrow y=-2\Leftrightarrow B\left(0;-2\right)\\ \text{PT hoành độ giao điểm }\left(d_1\right);\left(d_2\right):2x+2=-\dfrac{1}{2}x-2\\ \Leftrightarrow\dfrac{5}{2}x=-4\Leftrightarrow x=-\dfrac{8}{5}\Leftrightarrow y=-\dfrac{6}{5}\Leftrightarrow C\left(-\dfrac{8}{5};-\dfrac{6}{5}\right)\\ c,\text{Vì }2>0\text{ nên góc tạo đc là góc nhọn}\\ \text{Gọi góc đó là }\alpha\left(\alpha< 90\right)\\ \text{Ta có hs góc của }\left(d_1\right)\text{ là }2\\ \Leftrightarrow\tan\alpha=2\approx\tan63^026'\\ \Leftrightarrow\alpha\approx63^026'\)
\(b,B=\dfrac{x-4+2\sqrt{x}+6-3\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ c,M=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{x-\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\\ M=\dfrac{x-\sqrt{x}+2-x+2\sqrt{x}-1}{x-\sqrt{x}+2}\\ M=1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+2}=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\)
Ta có \(\left(\sqrt{x}-1\right)^2\ge0;x-\sqrt{x}+2=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
Do đó \(\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\ge0\)
\(\Leftrightarrow M=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\le1-0=1\)
Vậy \(M_{max}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)
a: Thay \(x=3+2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{3+2\sqrt{2}-\sqrt{2}-1+2}{\sqrt{2}+1+3}=\dfrac{4+\sqrt{2}}{4+\sqrt{2}}=1\)
\(1,2\sqrt{27}+5\sqrt{12}-3\sqrt{48}\\ =2.3\sqrt{3}+5.2\sqrt{3}-3.4\sqrt{3}\\ =6\sqrt{3}+10\sqrt{3}-12\sqrt{3}\\ =4\sqrt{3}\)
\(2,\sqrt{147}+\sqrt{75}-4\sqrt{27}\\ =7\sqrt{3}+5\sqrt{3}-4.3\sqrt{3}\\ =7\sqrt{3}+5\sqrt{3}-12\sqrt{3}\\ =\sqrt{3}\left(7+5-12\right)\\ =0\)
\(3,3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\\ =3\sqrt{2}.\left(4-\sqrt{2}\right)+3\left(1-4\sqrt{2}+8\right)\\ =12\sqrt{2}-6+3-12\sqrt{2}+24\\ =21\)
\(4,2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\\ =2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\\ =\sqrt{5}\left(2-5-4+11\right)\\ =4\sqrt{5}\)
1: =6căn 3+10căn 3-12căn 3=4căn 3
2: =7căn 3+5căn 3-12căn 3=0
3: =12căn 2-6+3(9-4căn 2)
=12căn 2-6+27-12căn 2=21
4: =2căn 5-5căn 5+4căn 5+9 căn 5
=10căn 5
Câu 2:
Ta có: \(x^3+3x^2-4x-12=0\)
\(\Leftrightarrow x^2\left(x+3\right)-4\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{-3;2;-2\right\}\)