Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các công thức lượng giác cơ bản liên quan đến góc của lớp 10:
\(sin\left(3\pi-x\right)=sin\left(2\pi+\pi-x\right)=sin\left(\pi-x\right)=sinx\)
\(sin\left(\dfrac{\pi}{2}+x\right)=cosx\Rightarrow sin\left(\dfrac{5\pi}{2}+x\right)=sin\left(2\pi+\dfrac{\pi}{2}+x\right)=sin\left(\dfrac{\pi}{2}+x\right)=cosx\)
\(cos\left(\dfrac{\pi}{2}+x\right)=-sinx\)
\(sin\left(\dfrac{3\pi}{2}+x\right)=sin\left(2\pi-\dfrac{\pi}{2}+x\right)=sin\left(-\dfrac{\pi}{2}+x\right)=-cosx\)
Nên pt tương đương:
\(3sin^2x-2sinx.cosx-5cos^2x=0\)
Với \(cosx=0\) không là nghiệm
Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)
\(\Rightarrow3tan^2x-2tanx-5=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{5}{3}\right)+k\pi\end{matrix}\right.\)
38.
\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)
\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)
\(y\left(2\right)=-\dfrac{11}{3}\)
Phương trình d:
\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)
Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn
39.
Gọi E là trung điểm AB, F là trung điểm CD
Từ E kẻ EH vuông góc SF (H thuộc SF)
Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)
\(\Rightarrow SE\perp CD\)
\(EF||AD\Rightarrow EF\perp CD\)
\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)
\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)
Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)
\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)
Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)
\(\left\{{}\begin{matrix}6u_2+u_5=1\\3u_3+2u_4=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6u_1.q+u_1.q^4=1\\3u_1.q^2+2u_1.q^3=-1\end{matrix}\right.\)
\(\Rightarrow u_1\left(6q+q^4+3q^2+2q^3\right)=0\)
\(\Leftrightarrow q^3+2q^2+3q+6=0\)
\(\Leftrightarrow\left(q+2\right)\left(q^2+3\right)=0\)
\(\Leftrightarrow q=-\text{}2\)
\(\Rightarrow u_1=\dfrac{1}{4}\)
\(\Rightarrow u_n=u_1.q^{n-1}=\dfrac{1}{4}.\left(-2\right)^{n-1}=\left(-2\right)^{n-3}\)
a, \(u_n=u_1.q^{n-1}\)
\(\Leftrightarrow192=u_1.2^n\)
\(\Leftrightarrow u_1=\dfrac{192}{2^n}\)
\(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}\)
\(\Leftrightarrow189=\dfrac{\dfrac{192}{2^n}\left(1-2^n\right)}{1-2}\)
\(\Leftrightarrow189=192-\dfrac{192}{2^n}\)
\(\Leftrightarrow\dfrac{192}{2^n}=3\)
\(\Leftrightarrow2^n=2^6\)
\(\Rightarrow n=6\)
a: AO=a*căn 3/3
=>SO=a*căn 6/3
b: (SA,(ABC))=(AS;AO)=góc SAO
tan SAO=SO/OA=căn 2
=>góc SAO=55 độ
Bán kính \(R=2,5\Rightarrow\) vị trí thấp nhất có \(y=2-\left(2,5\right)=-\dfrac{1}{2}\)
\(\Rightarrow2+2,5sin\left[2\pi\left(x-\dfrac{1}{4}\right)\right]=-\dfrac{1}{2}\)
\(\Rightarrow sin\left[2\pi\left(x-\dfrac{1}{4}\right)\right]=-1\)
\(\Rightarrow2\pi\left(x-\dfrac{1}{4}\right)=-\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow x=k\)
\(k=2018\Rightarrow x=2018?\)
\(2sin^2x-3sinx+1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\) (\(k\in Z\)) (I)
Có \(0\le x< \dfrac{\pi}{2}\)\(\Leftrightarrow\left[{}\begin{matrix}0\le\dfrac{\pi}{2}+k2\pi< \dfrac{\pi}{2}\\0\le\dfrac{\pi}{6}+k2\pi< \dfrac{\pi}{2}\\0\le\dfrac{5\pi}{6}+k2\pi< \dfrac{\pi}{2}\end{matrix}\right.\)(\(k\in Z\))
\(\Leftrightarrow\left[{}\begin{matrix}0\le\dfrac{1}{2}+2k< \dfrac{1}{2}\\0\le\dfrac{1}{6}+2k< \dfrac{1}{2}\\0\le\dfrac{5}{6}+2k< \dfrac{1}{2}\end{matrix}\right.\) (\(k\in Z\)) \(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{4}\le k< 0\left(1\right)\\-\dfrac{1}{12}\le k< \dfrac{1}{6}\left(2\right)\\-\dfrac{5}{12}\le k< -\dfrac{1}{6}\left(3\right)\end{matrix}\right.\)(\(k\in Z\))
Do k nguyên, từ (1) và (3) \(\Rightarrow k\in\varnothing\)
Từ (2)\(\Rightarrow k=0\)\(\Rightarrow x=\dfrac{\pi}{6}+0.2\pi=\dfrac{\pi}{6}\)
Ý C
(Hoặc sau khi bạn làm đến đoạn số (I),bạn vẽ đường tròn lượng giác ra sẽ tìm được x)