
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: A=(1/1+2)+(1/1+2+3)+...+(1/1+2+3+...+99)+(1/50)
A=[1/(2+1).2/2]+[1/(1+3).3/2]+....+[1/(1+99).99/2]+(1/50)
A= [2/(2+1).2]+[2/(1+3).3)]+...+[2/(1+99).99]+1/50)
A=2.[(1/2.3)+(1/3.4)+...+(1/99.100)]+(1/50)
A=2.(1/2-1/3+1/4-1/4+...+1/99-1/100)+(1/50)
A=2.(1/2-1/100)+(1/50)
A=2.(49/100)+(1/50)
A=1
đảm bảo đọc k hiểu

bạn điền thêm vào như thế này:
...................
A= 1-1/2^99 <1
Hay A<1
Vậy.........
Có. Chúng ta lí luận:
Vì \(1-\frac{1}{2^{99}}>1\)
\(\Rightarrow A>1\)

Ta thấy : \(a_1+a_2+a_3+.....+a_{2015}+a_1=1008.1=1008\)
Mà \(a_1+a_2+a_3+......+a_{2015}=0\)
\(\Rightarrow a_1+\left(a_1+a_2+a_3+....+a_{2015}\right)=1008\Leftrightarrow a_1+0=1008\) \(\Rightarrow a_1=1008\)

ta thấy 1/(1*2)-1/(2*3)=1/3=2*1/(1*2*3)
do đó A=1/2*{[1/(1*2)-1/(2*3)+[1/(2*3)-1/(3*4)]+.....+[1/(48*49)-1/(49*50)]}
=1/2*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+.....+1/(48*49)-1/(49*50)]
=1/2*[1/(1*2)-1/(49*50)]
=1/2*(1/2-1/2450)
=1/2*612/1225
=306/1225
Ta có:
\(A=1+1-1+1-1+1-1\ldots\)
Bây giờ, ta tính \(1-A\) :
\(1-A=1-\left(1-1+1-1+1-1\ldots\right)\)
Bỏ ngoặc ta có:
\(1-\left(1-1+1-1\ldots\right)=1-1+1-1+1\ldots\)
Ta nhận thấy vế bên phải chính là \(A\) nên ta có:
\(1-A=A\)