Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)
c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)
=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)
d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)
e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)
=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)
f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)
=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)
Bài 1 :
a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)
=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)
=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)
=> \(12-3x-9-2x+4=0\)
=> \(-5x=-7\)
=> \(x=\frac{7}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 5 - (x - 6) = 4(3 - 2x)
<=> 5 - x + 6 = 12 - 8x
<=> -x + 8x = 12 - 11
<=> 7x = 1
<=> x = 1/7
Vậy S = {1/7}
b) 2x(x - 3) + 5(x - 3) = 0
<=> (2x + 5)(x - 3) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)
Vậy S = {-5/2; 3}
c)ĐK: x \(\ne\)1; x \(\ne\)2
\(\frac{3x-5}{x-2}-\frac{2x-5}{x-1}=1\)
<=> \(\frac{\left(3x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(2x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}\)
<=> 3x2 - 8x + 5 - 2x2 + 9x - 10 = x2 - 3x + 2
<=> x2 + x - 5 = x2 - 3x + 2
<=> x2 + x - x2 + 3x = 2 + 5
<=> 4x = 7
<=> x = 7/4
Vậy S = {7/4}
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải các pt sau:
a) (x+4)(2x-3)=0
TH1: x+4=0 => x=-4
TH2 : 2x-3=0 => 2x=3 =>x=3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2\left(x-1\right)-a\left(x-1\right)=2a+3\)
\(\Leftrightarrow2a-2-ax+a=2a+3\)
\(\Leftrightarrow-2-ax+a=3\)
\(\Leftrightarrow-a\left(x-1\right)=5\)
\(\Leftrightarrow\left(x-1\right)=\frac{-5}{a}\Leftrightarrow x=\frac{a-5}{a}\)
b) \(\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+3}{4}=3\)
\(\Leftrightarrow\frac{12x+12+8x+16+6x+18}{24}=3\)
\(\Leftrightarrow12x+12+8x+16+6x+18=72\)
\(\Leftrightarrow26x+46=72\)
\(\Leftrightarrow26x=26\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.2x^2+7x-9=0\\ \Leftrightarrow2\left(x^2+\frac{7}{2}x-\frac{9}{2}\right)=0\\\Leftrightarrow x^2+\frac{7}{2}x-\frac{9}{2}=0\\ \Leftrightarrow x^2+\frac{9}{2}x-x-\frac{9}{2}=0\\\Leftrightarrow x\left(x+\frac{9}{2}\right)-\left(x+\frac{9}{2}\right)=0\\\Leftrightarrow \left(x-1\right)\left(x+\frac{9}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+\frac{9}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{9}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-\frac{9}{2}\right\}\)
\(b.x^2-4x+3=0\\\Leftrightarrow x^2-x-3x+3=0\\ \Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\\Rightarrow \left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
![](https://rs.olm.vn/images/avt/0.png?1311)
a. (x+4)(\(\frac{1}{4}\)x-1)=0
=>[\(\begin{matrix}x+4=0\\\frac{1}{4}x-1=0\end{matrix}\)
=>[\(\begin{matrix}x=-4\\\frac{1}{4}x=1\end{matrix}\)
=>[\(\begin{matrix}x=-4\left(n\right)\\x=4\left(n\right)\end{matrix}\)
S={-4;4}
b.
⇔\(\frac{x^2+4x+4}{x^2-4}\) -\(\frac{x^2-4x+4}{x^2-4}\) =\(\frac{4}{x^2-4}\)
=>\(x^2+4x+4-x^2+4x-4-4=0\)
⇔ 8x - 4=0
⇔x=\(\frac{1}{2}\) (n)
S=\(\left\{\frac{1}{2}\right\}\)
c.
=>2x-10< 5x+5
=>-3x <15
=> x > 5 (n)
{x/x>5}
a) \(\left(x+4\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Vậy pt trên có nghiệm \(x\in\left\{-4;1\right\}\)
b) \(\left(x+5\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-5\left(Nhận\right)\\x^2=-1\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiện x=-5
a) \(\left(x+4\right).\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0-4\\x=0+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-4;1\right\}.\)
b) \(\left(x+5\right).\left(x^2+1\right)=0\)
Vì \(x^2\ge0\) \(\forall x.\)
\(\Rightarrow x^2+1>0\) \(\forall x.\)
\(\Rightarrow x^2+1\ne0.\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=0-5\)
\(\Leftrightarrow x=-5.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-5\right\}.\)
Chúc bạn học tốt!