K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

minh giai phan d, nha bn :

x-a/b+c + x-b/c+a + x-c/a+b=3

=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0

=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0

=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0

Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0

=>x=a+b+c

13 tháng 1 2018

g, x - a / b + c + x - b/ c+a + x - c/ a+b = 3x / a+b+c

26 tháng 9 2023

Mn giúp mik vs ạ

 

 

24 tháng 2 2019

Nguyễn TrươngNguyễn Việt LâmNguyenTruong Viet TruongKhôi BùiAkai HarumaÁnh LêDƯƠNG PHAN KHÁNH DƯƠNGPhùng Tuệ Minhsaint suppapong udomkaewkanjana

4 tháng 3 2019

Akai HarumaUnruly KidLê Anh DuyKhôi BùiNguyễn Việt LâmNguyễn TrươngDũng NguyễnNguyenTRẦN MINH HOÀNG

a: =>a(x+1)(x+2)+bx(x+2)+cx(x+1)=1

=>a(x^2+3x+2)+bx^2+2bx+cx^2+cx=1

=>ax^2+3ax+2a+bx^2+2bx+cx^2+cx=1

=>x^2(a+b+c)+x(3a+2b+c)+2a=1

=>a+b+c=0 và 3a+2b+c=0 và a=1/2

=>a=1/2; b+c=-1/2; 2b+c=-3/2

=>b=-1; c=1/2; a=1/2

b: =>1=(ax+b)(x-1)+c(x^2+1)

=>x^2*a-a*x+bx-b+cx^2+c=1

=>x^2(a+c)+x(-a+b)-b+c=1

=>a+c=0 và -a+b=0 và -b+c=1

=>a+b=-1 và -a+b=0 và a+c=0

=>a=-1/2; b=-1/2; c=-a=1/2

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

28 tháng 2 2018

\(PT\Leftrightarrow\dfrac{x-a}{b+c}-1+\dfrac{x-b}{c+a}-1+\dfrac{x-c}{a+b}-1=\dfrac{3x}{a+b+c}-3\)

\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{c-a-b-c}{c+a}+\dfrac{x-a-b-c}{a+b}=\dfrac{3\left(x-a-b-c\right)}{a+b+c}\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}\right)=0\)

Nếu \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}=0\) thì PT có nghiệm với mọi \(x\in R\)

Nếu \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}\ne0\) thì PT có nghiệm là \(x=a+b+c\)

21 tháng 2 2019

\(\dfrac{x-a}{a+1}+\dfrac{x-1}{a-1}=\dfrac{2a}{1-a^2}\) (ĐK: \(a\ne\pm1\))

\(\Rightarrow\dfrac{\left(x-a\right)\left(a-1\right)}{a^2-1}+\dfrac{\left(x-1\right)\left(a+1\right)}{a^2-1}+\dfrac{2a}{a^2-1}=0\)

\(\Rightarrow\dfrac{ax-x-a^2+a+ax+x-a-1+2a}{a^2-1=0}\)

\(\Rightarrow\dfrac{2ax-a^2+2a-1}{a^2-1}=0\)

\(\Rightarrow2ax-\left(a^2-2a+1\right)=0\)

\(\Rightarrow2ax-\left(a-1\right)^2=0\)

Với a =0 , ta có đẳng thưc sai

Với \(a\ne0\), ta được :

\(x=\dfrac{\left(a+1\right)^2}{2a}\)

25 tháng 6 2017

\(\dfrac{x-b-c}{a}+\dfrac{x-c-a}{b}+\dfrac{x-a-b}{c}-3=0\)

\(\Leftrightarrow\dfrac{x-b-c}{a}-1+\dfrac{x-c-a}{b}-1+\dfrac{x-a-b}{c}+1=0\)\(\Leftrightarrow\dfrac{x-a-b-c}{a}+\dfrac{x-a-b-c}{b}+\dfrac{x-a-b-c}{c}=0\)\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

\(\)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ne0\Rightarrow x-a-b-c=0\)

\(\Rightarrow x=a+b+c\)