Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=1^2-4\cdot2\cdot\left(1-3m\right)\)
=1-8(1-3m)
=1-8+24m=24m-7
1/2<m<5 thì 12<24m<60
=>5<24m-7<53
=>Chọn C
b) \(3\left(x^2+2x+1\right)=10\)
\(\Leftrightarrow\left(x+1\right)^2=\frac{10}{3}\)
Chia 2 TH tiếp .
\(\left(2x+1\right)\left(x-1\right)>0\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -\frac{1}{2}\end{matrix}\right.\)
\(\left(3x+1\right)\left(x-5\right)\left(-4x+5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{3}\\\frac{5}{4}\le x\le5\end{matrix}\right.\)
\(\frac{x+2}{x-2}\le\frac{3x+1}{2x-1}\Leftrightarrow\frac{3x+1}{2x-1}-\frac{x+2}{x-2}\ge0\)
\(\Leftrightarrow\frac{x^2-8x}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{x\left(x-8\right)}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\\frac{1}{2}< x< 2\\x\ge8\end{matrix}\right.\)
Câu 32:
Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)
Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình d:
\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)
Câu 33:
\(\overrightarrow{BC}=\left(1;-2\right)\)
Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AH:
\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)
Câu 34:
Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)
\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)
Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)
Câu 30:
\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)
Cả 4 đáp án đều ko chính xác
Câu 31:
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)
\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt
Phương trình:
\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)
\(\sqrt{2x-3}\ge0\Leftrightarrow2x-3\ge0\Leftrightarrow2x\ge3\Leftrightarrow x\ge\frac{3}{2}\)
Hay x\(\in\)[\(\frac{3}{2};\infty\))
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-5=3-8x\\2x-5=8x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10x=8\\-6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{1}{3}\end{matrix}\right.\)